
1

Dragon Age: The Veilguard -
GI, RT, Character Creator and other systems.

Speakers: Kleber Garcia, Darrin Stewart & Navjot Garg

22

Website Abstract

22

We present the architectural challenges & decisions related to global
illumination, ray tracing and character creator for the latest installment of the
Dragon Age series - Dragon Age: The Veilguard. First, we will cover the
challenges around our probe baking system and decisions made around the
team size and asset constraints. Next, we will share implementation choices
taken for ray tracing considering the limitations of already existing ray tracing
tech, with the additional requirement of supporting more GPUs. Lastly, we will
go over our character creator tool, decisions on the technical side as well as
some practical technical details making this technology fulfill the game’s
requirements.

Speakers: Kleber Garcia, Darrin Stewart, Navjot Garg

33

Agenda

33

● Introduction to Dragon Age: The Veilguard
● Global Illumination
● Ray Traced Reflections
● Character Creator
● Q&A

44

Dragon Age: The Veilguard

44

● Frostbite engine
○ Editor, pipeline and runtime
○ World building tools
○ Lighting & rendering pipeline

● Dragon Age: The Veilguard
○ Latest installment in Dragon Age series
○ Launched on PS5, XBSX/S and PC
○ Small level content team, 15-20 people
○ 5 rendering engineers
○ Indoor and outdoor vibrant environments
○ Fast iteration, 16x16km terrain

5555

GI Results

6666

GI Results

7777

GI Results

8888

GI Results

99

Global illumination constraints

99

● Content team: 15 people, 16x16km levels with huge variability
○ Realtime ray tracing GI solution still immature through prepro and production (2020)
○ Limit precomputation capacity and maintenance

● No content capacity to do much lighting
○ Rely mostly on autoplaced probes
○ Avoid lightmaps as much as possible: lightmaps still needed

● Levels highly kit bashed
○ Apply GI efficiently (see GI + Gbuffer lay down problem)

● Quick iteration
○ Bake times must be fast - bake distribution using SN-DBS

● Maintain a high quality
○ Threw memory at the problem and relied on a free streaming system
○ Smaller levels meant no need to do zone streaming, but rather camera based chunk

loading

1010

Global Illumination

1010

Collaboration model:

● Ben & Kleber having tons of high iteration /
collaboration

● Engineer: working mostly on two branches and
preporting fixes. Using game team branch to
validate

● Iterate vertically: from UX to runtime to SNDBs

F@$% !!

1111

Global Illumination baking

1111

● Flux - frostbites radiosity suite (improvements)
○ Radiosity path tracer suite (.dll module & inspector)
○ Probe placement and radiosity baking (lightmap and probe)
○ Headless distributed baking functionality built on top of Sony’s SN-DBS
○ FluxViewer - editor / inspector and debugging

● GiGrid - frostbites probe placement solution (improvements)
○ Runtime: Fully probe lit, streamable volumetric probe system
○ Cook pipeline: async bake calling flux and generates game ready entities & resources

● Fast bake times - 10 mins to 15 mins per level
● Few lightmaps, mostly auto placed probes

1212

Global Illumination baking

1212

● 500 mb streaming budget
● Do as much in probes
● Up to 0.5m for highest resolution
● Light leaking: build chunky

architecture. Thinnest wall .5m

1313

Global Illumination

1313

● Lightmap vs probes
● Lightmap for objects that could just leak

too much

1414

Global Illumination baking

1414

● World split into cells, each cell holding probe recursive tree structure
● Tree levels progressively stream from disk to GPU

● Further details on placement algorithm:
○ https://dl.acm.org/doi/10.1145/3388767.3407314

https://dl.acm.org/doi/10.1145/3388767.3407314

1515

Global Illumination baking

1515

● Flux does the placement and baking by splitting the world in cells
● Send bundle of cells to many agents, bake then reconstruct

Frostbite Flux.dll

PC0:
FluxWorker.exe

PC1:
FluxWorker.exe

PCN:
FluxWorker.exe

FrostbiteFlux.dll

FluxScene.data
-Cells
-FluxScene.data
(chunk)

-Irradiance SH Probes
-Cell GPU tree

Full scene results

1616

Global Illumination baking

1616

● Previous vendor
increased prices
significantly

● Company mandated
SNDBs was a last
minute requirement

● VPN + Covid was a
huge issue. Mitigated
by keeping machines
in office.

1717

Global Illumination baking

1717

● FluxViewer.exe -> inspect
FluxScene, GiGrid cells and other
possible artifacts

● Small stand alone application
● Added support for volumetric

probes and dynamic objects to
test probes

Bad normals == qnans

1818

Global Illumination

1818

Volumetric fog support

1919

Global Illumination

1919

The GI - Gbuffer laydown problem -

Lightmap objects fetch lightmap during gbuffer laydown into an irradiance buffer

Material ShaderGraph:
GBuffer Laydown

Deferred Lighting

Sample Lightmap

GB0: normal, roughness

GB1: albedo, skyvis

GB2: metalMask, reflectance, matId

GB3: Irradiance

2020

Global Illumination

2020

The gbuffer laydown problem -

Probed objects fetch irradiance after, in a different pass.
The reason is performance -> sampling a hierarchy during material laydown is expensive!

GB3: Irradiance

Material ShaderGraph:
GBuffer Laydown

Deferred Lighting

GpuProbes
DeferredPass

GB0: normal, roughness

GB1: albedo, skyvis

GB2: metalMask, reflectance, matId

GPU
Probe
Tree

2121

Global Illumination

2121

The gbuffer laydown problem -

Problem: content creator uses a skyvis node in the material graph for weather effect! Adds massive VGPR cost!

GB3: Irradiance

Material ShaderGraph:
GBuffer Laydown

Deferred Lighting

GpuProbes
DeferredPass

GB0: normal, roughness

GB1: albedo, skyvis

GB2: metalMask, reflectance, matId
Weathering

effects using
skyVis

GpuProbes
Sample

(expensive)

GPU
Probe
Tree

2222

Global Illumination

2222

The gbuffer laydown problem -

Solution: Sample cascade skyvis presampled grid -> 1 tap on 3d texture, cheaper

Lesson: Reading lighting in material graph == trouble <-> avoid this in your engine

GB3: Irradiance

Material ShaderGraph:
GBuffer Laydown

Deferred Lighting

GpuProbes
DeferredPass

GB0: normal, roughness

GB1: albedo, skyvis

GB2: metalMask, reflectance, matId
Weathering

effects using
skyVis

GpuProbes
Sample
Cheap!

GPU
Probe
Tree

Presampled
world

 3d cascade

2323

Global Illumination

2323

Solution: “Presample” using a weathering skyvis probe cascade around camera

2424

Global Illumination

2424

Fighting seams, some reasons

● Determinism issues between bake agents -> neighbor probes different
● Backface sampling strategy

2525

Global Illumination

2525

Budget driven

● Exposed ‘high level heap’ tuning
● Easy reloadable
● Not very obvious but fast

iteration

2626

Global Illumination

2626

Streaming failures

● Fallback to higher lod
● Mode to warn content

creator

2727

Ray-Traced Reflections

2727

28

Ray-Traced Reflections

282828

Previous work:

● It Just Works: RT Reflections in Battlefield V: https://www.youtube.com/watch?v=ncUNLDQZMzQ
● Hardware Ray Tracing as a first-class citizen in Frostbite:

https://www.nvidia.com/en-us/on-demand/session/gtcfall21-a31411/
● Global Illumination Based on Surfels (GIBS):

https://www.ea.com/seed/news/siggraph21-global-illumination-surfels
https://advances.realtimerendering.com/s2024/index.html#gibs2

https://www.youtube.com/watch?v=ncUNLDQZMzQ
https://www.nvidia.com/en-us/on-demand/session/gtcfall21-a31411/
https://www.nvidia.com/en-us/on-demand/session/gtcfall21-a31411/
https://www.ea.com/seed/news/siggraph21-global-illumination-surfels
https://www.ea.com/seed/news/siggraph21-global-illumination-surfels
https://advances.realtimerendering.com/s2024/index.html
https://advances.realtimerendering.com/s2024/index.html

2929

Ray-Traced Reflections

2929

“It Just Works” recap

GBuffer

RT Reflections

Final Result

3030

Ray-Traced Reflections

3030

“It Just Works” Recap, pt 2

Opaque
Trace /

Mat Eval

Opaque
Lighting

Transp
Trace DenoiseVariable

Rate Alloc
Ray

Binning
Screen
March

Optional

3131

Ray-Traced Reflections

3131

Dragon Age Challenges:

● Original RT solution not cross-platform
● Original solution built on old engine
● Upsampler vs checkerboard?
● Limited art and engineering resources
● Denoiser performance
● Original solution evaluated materials in closest hit
● No participating media volume support

3232

Ray-Traced Reflections

3232

Strategic decisions:

Consoles:

● Ray Tracing only supported in “Fidelity” mode (30 fps)
● Only one RT feature active at a time – RT Reflections or RTAO
● Half Res Support

PC:

● “Ultra” modes could have everything
● User configurable

3333

Ray-Traced Reflections

3333

Opaque Material Eval

Screen March

Opaque Trace

Lighting+FogSky+Fog

Screen March

Opaque Trace

Alpha Test Trace

Mat Eval

Sky+FogLighting+Fog
Battlefield V

Dragon Age

Hit

Miss

Indeterminate

Hit

RT “GBuffer”
Hit

Miss

Indeterminate

Hit or Miss

Hit

3434

Ray-Traced Reflections

3434

Compute/Anyhit

Input Assembler

Vertex Shader

Rasterization

Pixel Shader

Blend to Target

Raster Stages

“Input Assembler”

“Vertex Shader”

Bary Interp

“Pixel Shader”

Write Output

Compute/Anyhit

3535

Ray-Traced Reflections

3535

Here be dragons….

// 'Input Assembler' stage
IaOutput iaOut = runInputAssembler(primId, instId, startIndex);

// 'Vertex shader' and 'Raster' stage
float3 hitPos = rayOrigin + hitT * rayDirection;
VsOutput vsOut = runInterpolation(iaOut, hitPos, bc3);

// 'Pixel shader' stage
PsOutput psOut = runPixelShader(vsOut, instId, primId, hitPos);

IaOut runInputAssembler(uint primId, uint instId, uint startIndex)
{
 IaOutput iaOutput;
 for (uint edgeId = 0; edgeId < 3; ++edgeId)
 {
 // Generated code unpacks vertex data from stream(s)
 }
}

VsOutput runInterpolation(IaOutput iaOut, float3 hitPos, float3 bc)
{
 VsOutput vsOut0 = runVertexMain(iaOut.v[0]);
 VsOutput vsOut1 = runVertexMain(iaOut.v[1]);
 VsOutput vsOut2 = runVertexMain(iaOut.v[2]);

 VsOutput vsOut;
 vsOut.position = ...; // barycentric interpolation goes here...
 // ...

 return vsOut;
}

VsOutput runVertexMain(VsInput inputs)
{
 VsOutput vsOut;
 vsOut.pos = skinPosition(inputs.pos); // 3 vgprs
 vsOutput.norm = skinNormal(inputs.norm); // 3+3 vgprs
 vsOutput.tangent = skinNormal(inputs.tang); // 3+3+3 vgprs
 vsOutput.binorm = skinNormal(inputs.binorm); // 3+3+3+3 vgprs
 vsOutput.uvs = animateUVs(inputs.uvs); // 3+3+3+3+2 vgprs

 // 14 vgprs used to store 1 vertex!
 Return vsOut
}

42 VPGRs allocated!!!!

3636

Ray-Traced Reflections

3636

Worst-case scenario

struct VsOutput
{
 float4 hl2BasisL0;
 float4 hl2BasisL1;
 float4 hl2BasisL2;
 half4 hPos;
 float4 preMulAlphaFog;
 float3 color;
 half3 normal;
 float3 keyDirection;
 float2 texCoords1;
 float2 alphaLevelsMinMax;
 float2 texCoords1Normalmap;
 float alpha;
 float shadow;
 float alphaLevelsExponent;
 float softParticleInvFadeDist;
 float posZ;
 float type;
 float normalBlend;
};

3737

Ray-Traced Reflections

3737

VGPR Strategies

Compute and Anyhit (Opaque Alpha Test)

● Opaque Alpha Test as a separate TLAS and trace
● Use raytrace branch node for worst-offenders
● Root node switch for opaque-ish materials (camera stippling tricks, custom lighting models)

Anyhit (Transparent)

● Rewrote emitter “stack” code gen for RT (legacy VFX system)
● Separate CS pass caches vertex data for emitter “graph” (modernized VFX)

Future Work

● Vertex Data Cache for animated geo (a la GDC Vault - Large Scale GPU-Based Skinning for Vegetation in 'Alan Wake 2')
● Explore code gen for moving from VS->PS (https://advances.realtimerendering.com/s2024/#serac)

https://gdcvault.com/play/1034310/Large-Scale-GPU-Based-Skinning
https://advances.realtimerendering.com/s2024/#serac

3838

Ray-Traced Reflections

3838

Participating Media

https://www.ea.com/frostbite/news/physically-based-unified-volumetric-rendering-in-frostbite

https://www.ea.com/frostbite/news/physically-based-unified-volumetric-rendering-in-frostbite

3939

Ray-Traced Reflections

3939

Participating Media Volumes

∫

else if (edgeFadeType == EdgeFadeType_Quadratic)
{
 float3 w = 1.0 - saturate(abs(pmVolumeCoord.xyz));
 float finalW = min(w.x, min(w.y, w.z));
 softEdge = finalW * finalW;
}

∫ ?!?

4040

Ray-Traced Reflections

4040

Denoiser

● Inspired by Nvidia’s RELAX denoiser:
https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s32759/

● But….different…
○ Tile-based
○ Ray reuse pass
○ Fewer temporal samples
○ Disocclusion?
○ Reactive mask

https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s32759/

4141

Character Creator

4141

4242

Character Creator

4242

Goals for Character Creator

● Push the boundary on number of customization options.

● What you see in character creator is what you get in game.

● Optimal performance within memory budget.

● In-game character creator should be subset of dev tools.

● Reuse the system for infill characters

Appearance Editor

What to customize

Customizations are divided into following categories:

● Shader Params
● Morph Features
● Head Blends
● Texture Sets
● Appearance Items

Character Creator Architecture

UI
Interaction

Customization
Manager

Preview Character

Persistence

Player Character
Loaded in game

Load main game or saved
game session

Send
customization
data

Customization
finalized

Apply changes
via Appearance
System

Appearance Preset

Asset Pipeline

Appearance System

Appearance Item 1
Appearance Item 2
...

Appearance Item

MeshBlueprint
Material

Pipeline
Cook

Asset
Bundles

Runtime

Asset
Bundles

Appearance
Component

generate

instantiate
Items

applies

Shader
Parameter
Blocks

Appearance System

Appearance system is used for all character rendering that can have variations in appearance like player character,
followers & infill characters.

● Character Creator
● Gear System
● Infill Characters

Types of NPCs in game:

● Full NPCs
● Light NPCs
● Static NPCs
● Swarm NPCs

Shader Parameters

● Change applied to materials via shader
parameters.

● Examples: skin tone, hair color, eye color,
makeup etc.

● The shader graphs are set in such way that
it allows all values in different character
shaders are updated for one parameter
name.

○ Allows matching face and body skin tone without
separate process.

● All shader changes are applied as one
shader parameter block to minimize
performance hit.

● Shader parameter blocks can be stacked.

https://docs.google.com/file/d/1xjH0zCUcHl3A6FErMQKqyXHrWMCho3D4/preview

Morph Features

● Changes to facial features and
body builds.

● The weights dictated how the
joints in face and body rig can be
changed to produce desired
features.

● Weight ranges can be mapped
from absolute values on rig to -1
to 1 in game.

https://docs.google.com/file/d/1MN3fB-JRBj9MHpa1KEVloDwi_F49iq3L/preview

Head Blends

● 3 preset head blend shapes are
interpolated between each other.

● Each race has its own collection
of head blends created by artists.

● Only limited to heads, due to
heavy computation.

● Memory consumption can
increase based on number of
head assets.

○ Solution: only keep the assets bundles
that are actually used in the character
and avoid duplication of asset bundles.

https://docs.google.com/file/d/1Pb8ZehYec11BaWFh3rC0NQ4LWm-4Ux9d/preview

Texture Sets

● Used for complexion sets,
makeup, tattoos, paint and
scars in face and body.

● Higher memory
consumption leading to
lower resolution streaming
textures.

○ Solution: unused bundles are
not loaded into the memory.

○ Use of soft refs in the assets
instead of hard references to
texture assets.

https://docs.google.com/file/d/10MvhHF0Yl50o-6WxACFZcP_mvbjd6ZWJ/preview

Texture Bundles

Pipeline

Runtime

Create soft refs to
texture in asset

Create Texture IDs Create Texture Bundles

Use Texture IDs and soft refs
to load textures

Apply textures via shader
parameter blocks

Appearance Items

● Head presets, body presets, hair,
eyebrows, eyelashes, qunari horns
and gear are all appearance items.

● Appearance items automatically
applies all the shader overrides as
setup in data.

● Async loading of items helped in
achieving better performance.

● Item bundles had to be unloaded
after each category was done to
keep memory within budget.

https://docs.google.com/file/d/1WTLhjTj7mUPl_ZRPZeUcSNl9rNhtQGFx/preview

Takeaways

● Start development of character customization early.
● Start with dev tools to see what customizations are required for character

design.
● Refine the options based on the impact in game. E.g. nail polish options was

abandoned.
● Measure impact vs effort. Efforts for jewelry on head body blend shapes

was too high with lesser impact.
● Keep an eye on memory and make adjustments.

55

Lighting Strand Hair

Problems:

● Varied fantasy visual environments.
● Lighter hair color tone was prone to unexpected

changes.
● The hair lighting model has no diffuse component,

it's purely specular

Solutions:

● Fake character lights.
● At least one shadow casting light had to be

present.
● LRVs and sky sampling for correct color.

For more details check out: https://www.ea.com/technology/news/strand-hair-dragon-age-the-veilguard

Lighting Strand Hair

A new technique for blending hair with transparent VFX and
participating media.

● Split the hair into two distinct passes, first opaque, and then
transparent.

● Add alpha cutoff to the render pass that composites the
hair with the world and first renders the hair that is above
the cutoff (opaque), and then below the cutoff
(transparent).

● Before these split passes are rendered, we render the depth
of the transparent part of the strand hair which is used as a
spatial barrier between transparent pixels that are “under”
and “on top” of the strand hair.

Lighting Strand Hair

For more details check out: https://www.ea.com/technology/news/strand-hair-dragon-age-the-veilguard

Lighting Strand Hair

● High quality shadow maps are
required in order to have good
coverage of the tens of thousands of
thin hair strands in the shadow map
texture

● Hero shadows are rendered for every
Strand Hair object and light
designated as important to the shot.

● These hero shadows are generated at
run time, using a tightly fitting light
frustum that is adjusted to each hair’s
bounding box.

● As an optimization, check regular
shadow maps first and if no hit, then
sample strand hair hero shadows.

For more details check out: https://www.ea.com/technology/news/strand-hair-dragon-age-the-veilguard

Collider Sets

● Collider sets are used for preventing

hair clipping with character outfits.

● Since the main player model

proportions can be customized, the

colliders also needed to fit the

customization

● Colliders were moved based on

skeletal joint transforms

https://docs.google.com/file/d/1h5KWFkVEZXxXhN3nHtr_GLgFHyYRTHz0/preview

Strand Hair Performance

● Rendering budget:
○ 8 strand hair assets at once
○ 6.5ms for 33.3ms frametime and 3ms for 16.6ms frame time
○ Hair sim on GPU compute ~2 ms

■ Occasional spike when loading or teleporting characters.
● Optimizations & Constraints:

○ Only on PC high and ultra settings, PS5 and XBSX.
○ Only for head hair and beards. Eyelashes and eyebrows used card hair.
○ Only for named NPCs besides the player character.
○ Bundling the strand and card hair separately saved a lot of memory issues, especially on

consoles.
○ Hair resolution control adjusts the hair resolution depending on upsampler and DRS settings.
○ Disable hair sim when off screen or far away from camera using the sim lods.
○ Decimation of render strands based on camera distance.

Shader Variation System
● Used for Damage Over Time effects like Poison/Burn/Freeze on players and NPCs
● Built to utilize the shader parameter blocks.
● These also can be stacked on top of the other shader customizations.
● Avoids SRV limitations and shader permutations bloat.
● Also useful for showing injuries or blighted states on character.

Infill Characters

● Values are randomized based on game lore
constraints.

● These are specified in a infill character database and
priority value is assigned based on required
gender/lineage/ethnicity for different regions game.

● The database is parsed through the during pipeline
stage and appropriate key value pairs are made from
ID and asset bundles.

● At runtime, based on priority values, appropriate
asset bundles are loaded and characters are
rendered.

● The appearance system was reused to allow for
variations in the infill characters but did not
customize at runtime.

Infill Characters Trade-offs

● Used 2 head blends instead of 3 as in Full NPCs.
● Stop blending computations at long camera distance.
● No feature morphs were used because camera never gets as close.
● Card hair only for infill NPCs.
● Shader params subset was used. For example: no makeup for infill characters.
● Texture sets subset was used for complexion.
● 1-mip offset for all textures on platforms with memory constraints was used.
● Did not make separate low poly models because LODs were usually enough for reducing the geo

complexity at that distance from camera.
● Division of data by region allowed to load/unload assets as needed for that region.

○ Also provides better content management for artists

64

Infill Characters

65

Thank You!

The Dragon Age: The Veilguard graphics team:

James Power, Patrick Chan, Thomas Roy, Wyatt Hammond, Sam Moore(Performance Lead) & Ben McGrath(Lighting Director)

Frostbite Rendering team:

Matthias Moulin, Carlos Macarron, Matti Hietanen, Kyle Hayward, Jon Valdes, Filipe Amim, Diede Apers, Viktor Alm, Yasin
Uludag, Robin Taillandier, Leo Taslaman, Sylvain Meunier, Brad Loos, Mick Beaver

Q&A

66

67

Bonus slides

68

6969

Ray-Traced Reflections (bonus)

6969

Participating Media - SSR vs RT

(From Beer–Lambert law - Wikipedia)

dssr

dtrace

https://en.wikipedia.org/wiki/Beer%E2%80%93Lambert_law

Opaque Material Evaluation

7070

Ray-Traced Reflections (bonus)

7070

ID->Mat/Mesh ID->Inst Index

TLAS Instance ID
Lookup Tables

x 2

x 2

x 2

x 4

3
3
0
1
3
2
2
1
3
0

0
1
2
3
4
5
6
7
8
9

0
1
0
0
2
0
1
1
3
1

0
1
2
3
4
5
6
7
8
9

Sorting Opaque Hits

7171

Ray-Traced Reflections (bonus)

7171

Count Hits Batch Instance->RayIndex

11
8

14
21

0
1
2
3

0
11
19
33

0
1
2
3

Prefix Sum

28
36
…
12
24
…
8
15
…
79
81
…

7272

Ray-Traced Reflections (bonus)

7272

Opaque Material Eval Dispatch

ExecuteIndirect(GreenMaterial);
ExecuteIndirect(RedMaterial);
ExecuteIndirect(PurpleMaterial);
ExecuteIndirect(OrangeMaterial);

RT “GBuffer”

