
RE ENGINE
Meshlet Rendering Pipeline

Games Utilizing the Meshlet Rendering Pipeline

1

A1

Games Utilizing the Meshlet Rendering Pipeline

2

Agenda

RE ENGINE Team

Previous Rendering Pipeline

Integrating the Meshlet Rendering Pipeline

Optimizing Time Changes

3

RE ENGINE Team

Independent from game development teams.

Supplies engine for each game.

Games prohibited from modifying engine.

Handles feature additions, optimizations, and QA with game teams.

Engine branch made for game when near completion.

Revisions to engine are quickly reflected in game branches.

4

A1

A2

SL3

Previous Rendering Pipeline

Used Multi-Draw Indirect and GPU-based occlusion culling.

Small objects used instance-based occlusion culling.

Large background meshes consisting of multiple objects divided into 256-triangle sections then occlusion culling performed.

Optimized for traditional single-body meshes with no extra steps needed.

Used occluders created by artists.

Limitations of Instancing:

Possible to render instances where bindless is applied and materials differ.

Unable to handle differences between geometry and LODs due to CPU limitations.

5

Occluder placed in front of cameraNormal rendering

A1

SL2

Rendering Vast Environments

Dragon's Dogma 2 and Monster Hunter Wilds

Generate structures from separate models.

Large amounts of geometry.

Changing time of day.

Productivity enhancements needed.

6

A1A2A3

Switching to the Meshlet Pipeline

Nanite is a rendering engineer's dream-come-true.

Automatic occlusion culling, auto-generated LODs, streaming, software rasterizer,
visibility buffer, and more.

Problems to Solve:

CPU/GPU capability and efficiency enhancements:

1. Meshlets

2. Two-phase Occlusion Culling

3. Visibility Buffer

4. Software Rasterizer

Automatic LODs difficult to implement with current resources.

7

A1

Dragon's Dogma 2

Background only supports meshlets for static meshes.

Large meshes use a single hardware mesh shader or vertex shader.

Small meshlets use software rasterizer.

Uses deferred rendering with visibility buffer.

Same shader initialized only once.

All materials are processed as bindless.

Some alpha tests and decals use special rasterizers.

8

Meshlets

Meshlets are fragments of meshes divided by a defined granularity.

RE ENGINE can specify up to 128 vertices and 128 triangles.

Dragon's Dogma 2 and Monster Hunter Wilds specify both as 128.

Asset size changes depending on what is specified as shown below.

9

vrt32 tri32 vrt64 tri64 vrt64 tri126 vrt128 tri128

39,763 KB 35,386 KB 34,094 KB 33,231 KB

A1

Meshlet Structure

Uses data converted offline.
Mesh represented with one ByteAddressBuffer.

The header is a 256-byte structure.

Determining LODs:

 GUP determines LODs using LOD factor.

 Clusters are referenced with lodMeshletOffset.

Supports Streaming Structure:

LODs are stored from least to most detailed.
Uses ReservedResource(TiledResource) for memory management.

10

Type Header

Float3 AABBMin

Int lodNum

Float3 AABBMax

Int validLodBits

Int[8] lodMeshletsOffset

Int[8] lodFactor

Int[8] bindlessGeometryOffset

A1

SL2

Meshlet Clusters

Each cluster stores compression options and more in header.

Vertex data is stored directly within each cluster.

Divided by index and vertex attributes for compression.

Two Types of Compression:

Vertex Quantization

 16bit, 10bit, or 8bit precision.

Index is 8-bit triangle list or triangle strip.

Attribute Compression

Attributes include the normal, tangent, UV, vertex color, etc.

 Bit flag enables compression.

 Check if all elements in attribute are same value.

If all attribute values the same, stores as a single value.

11

Type MeshletHeader(32Bytes)

Float3 AABBCenter

bytes4 vertexNum(byte)

primitiveNum(byte)

materialID(byte)

partsID(byte)

Float3 / ushort[6] AABBExtent /

AABBQuantizeCenter AABBQuantizeExtent

Uint / Bitflag isMeshletCompressedNormal

isMeshletCompressedTexcoord1

isMeshletCompressedTexcoord2

isMeshletCompressedTexcoord3

isMeshletCompressedVertexColor

isMeshletCompressedSkined

isMeshletNoTangent

Reserved

isMeshletUseVertexColor

isMeshletUseTexcoord2

isMeshletUseTexcoord3

isMeshletUseSkinned

……

Compression Example: Vertex Colors

12

Instances

13

Meshlet Clusters

14

Vertex Color Compression

15

Red:

No vertex color

Yellow:

One-color cluster

Blue:

Multiple-colors

VertexColorCompression

16

Yellow:

Multiple colors

if (isMeshletUseVertexColor(meshletHeader)) {

if (isMeshletCompressedVertexColor(meshletHeader)) {

 col = getMeshletVertexColor(buffer, offset, 0);

 offset += MeshletVertexColorSizeInBytes;

}else {

 col = getMeshletVertexColor(buffer, offset, vertexIndex);

 offset += vertCount * MeshletVertexColorSizeInBytes;

}

}

A1SL2

Flipping Binormals

17

Red:

Flip unneeded

Yellow:

Flip needed

Blue:

Mixed

if (MeshletIsBinormalFlip(meshletHeader) == 2) {

uint dataCount = ((vertCount + 31) / 32);

uint loaded = buffer.Load(offset + (vertexId.x / 32) * 4);

tang.w = VIA_BFEu(loaded, vertexId.x & 31, 1) ? -1.0 : 1.0;

offset += dataCount * 4;

} else {

tang.w = getMeshletIsBinormalFlip(meshletHeader) ? -1.0 : 1.0;

}

Compression Effect on File Size

Name mesh Meshlet

Meshlet +

attribute

compaction

RE ENGINE sample 75,791,760 bytes 56,275,516 bytes 40,309,144 bytes

18

Real-life Result of Compression:

Reduction of 35MB of data.

Two-phase Occlusion Culling

Dragon Dogma 2's Visibility Buffer Rendering Pipeline

19

Instance Culling

Instance

Culling

Cluster Culling

Software Raster

Hardware Raster

Generate

HiZ

Cluster Culling

Software Raster

Hardware Raster

Generate

HiZ

Special

Rasterizers

Occlude Instances Occlude Clusters

Visibility Buffer Shaders

Visibility Buffer Shaders

Phase 2

Phase 1

Instance Structure

Meshlet location information is 80-byte instance.

UserParam:

User-defined, referenced from shader.

PartsTableIndex:

Per-mesh 256-bit visibility flags.

Per-cluster visibility flags.

Large capacity per instance.

extendBindlessIndex:

Can access structures like SpeedTree.

Type BindlessMeshInstance

Float3x4 World matrix

Int Geometry index

(bindless index)

Int Material (byte offset)

Int User Param

Int Draw Flags

Int Parts Table Index

int Extend Bindless Index

Int2 reserved

20

Culling

Instance Culling
Uses 32-bit draw flags to determine if target should be rendered.

Viewport control, writing to cache when rending shadows, and more.

Instance/Cluster Culling target shape uses AABB

View Frustum/Zero Area is handled mathematically.

Runs HiZ culling if possible.

If HiZ is a visibility buffer, sets LOD bias to 2 x 2, 4 x 4, 8 x 8.

Increases culling test cost but can increase performance depending on meshlet footprint in screen-space.

21

2 x 2 8 x 8

A1 SL2

Distribution of GPU Processing Granularity for Cluster Culling

Meshlet amount changes depending on meshlet types and LODs.

Meshlets made from many vertices generate many clusters.

Single-thread and single-wave limits amount able to be processed.

22

VisibilityBuffer Pass Cluster Culling

1.578 ms 0.543 ms

Tested on PlayStation5 async compute off

Distribution of GPU Processing Granularity for Cluster Culling

23

uint sharedInstance;

if (WaveIsFirstLane()){ globalAtomicInc(sharedInstance); }

shared_instance = WaveReadLaneFirst(sharedInstance);

uint div = INSTANCE_SUBDIV_COUNT; // 16 sub-division

uint targetIdx = sharedInstance / div;

while(targetIdx< getInstanceCount()){

....

uint MeshletNum = getMeshletNum(getMeshlet(targetIdx), getLOD(targetIdx));

....

uint subMeshletNum = MeshletNum / div; // Sub-dividing

 uint index = sharedInstance & (div-1); // Get subdivision index

 uint offset = subMeshletNum * index; // Calculate offset using subdivision index

 if (index == div-1) subMeshletNum = MeshletNum - offset; // Reassigning number of subdivision

 if (MeshletNum < WaveSize * div){ // Optimizing for small number of clusters

 subMeshletNum = min((uint)max(int(MeshletNum) - int(index * WaveSize), 0), WaveSize);

offset = WaveSize * index;

}

for (uint instanceID = WavePrefixCountBits(1); instanceID < subMeshletNum; instanceID += WaveSize){

culling(targetIdx, offset + instanceID);

}

if (WaveIsFirstLane()){ globalAtomicInc(sharedInstance);}

shared_instance = WaveReadLaneFirst(sharedInstance);

targetIdx = sharedInstance / div;

}

Single instance divided into N waves and processed.

Implementation simple and can somewhat handle large amounts of clusters.

Clusters VisibilityBuffer Pass Cluster Culling

1 1.578 ms 0.543 ms

16 1.159 ms 0.051 ms

Tested on PlayStation5 async compute off

Structure of Culling Results

64-bit Output Structure of Cluster Culling:

CulledMeshletInfo:

Acquires material index of cluster from cluster offset.

Accesses bindless material structure from instance index.

24

Type CulledMeshletInfo (64-bit)

Uint 24-bit Instance Index

Uint 8-bit Fixed point float, LOD transition value

Uint Meshlet Cluster Offset

Hardware Raster

GPU switches between mesh shaders and vertex shaders.
Depth test enabled, 64bitAtomic to PrimitiveID or output as R32G32Uint RenderTarget.

Triangle Index

7-bit due to maximum triangle output of 128.

Instance Index

24-bit for accessing CulledMeshletInfo.

Signature

 Signature can change size and used to switch visibility buffer types.
 Meshlets are 1-bit value 0b, terrain is 2-bit value 10b.

25

Signature InstanceIndex Triangle Index

1-bit (Always 0) 24-bit 7-bit

PrimitiveID

Mesh Shader

Tested Amount of Output Vertices and Triangles

Low amount of vertices and triangles cause increased file size and cluster culling cost.

Clustering performance rapidly degrades when looking at overall times.

Not Using Triangle.

In testing it turns on and off, but clearly not used to its fullest.

Output of primitive IDs use Primitive Attribute (DX12) and more.

26

v128/t128 v64/t126 v64/t84 v64/t64

Visibility pass 882 us 920 us 935 us 1002 us

Cluster Culling 168 us 208 us 229 us 300 us

HW Raster 158 us 150 us 141 us 139 us

Tested on GeForce RTX 4090

Special Rasterizers

Uses information of primitive output from two-phase occlusion culling

AlphaTestGBuffer/GBufferDecal/TwoSideGBuffer

Sorts based on IDs then renders.

27

Generate Sort Key Build Bucket Sort Indirect Args

Generate Key Bucket Sort indirectArgs

24 us 11.29 us 5.95 us 1.05 us

PlayStation 5

GenerateSortKey

Retrieve shader IDs from materials of clusters from cluster culling.

Shader IDs as index for indirect table of shaders for each material.

Index of sorted PSO used as key.

Shading Shader used for displaying materials.

28

Shader ID Shading

Shader

Visibility

Buffer

Geometry

Transform

Shadow

Cast

0 0 0 NA 0

1 1 NA NA 0

2 2 NA 0 2

3 0 1 NA 0

PSO

address

PSO

address

...

Shader Shadow Cast

Bucket and Sort

Fast and parallel sort is highly desirable.

bitonicsort? radixsort?

Uses a simpler method:

Restrict key to 11 bits.
Make bucket.
- Bucket is shader ID's key bit length.

- Prefix Count what is counted up.

Prefix Count determined offset of write
destination.

Sort

・Elements atomic add bucket Prefix Count.

29

0 2 1 0 0 2 2 2 4

0 1 2 3 4 5 6 7 8

3 1 4 1 0 0 0 0 0

0 3 4 8 9 9 9 9 9

Prefix Count the result

Count Up for sort

Key

Value

Structure for sorting

Sort

Atomic add offset of key bucket and store data in return value.
Atomic cost high and value continuity for parallel processing not guaranteed.
Solved using Compact Value if key is the same within a wave.

30

uint write_offset = 0;

bool active = true;

[loop]

while (WaveActiveAnyTrue(active)) {

if (!active) continue;

[branch]

if (WaveReadLaneFirst(bucket_index) == bucket_index){

uint wave_local_count = WaveActiveCountBits(1);

uint wave_local_offset = WavePrefixCountBits(1);

if (wave_local_offset == 0)

RWBucket.InterlockedAdd(bucket_index * 4, wave_local_count, write_offset);

write_offset = WaveReadLaneFirst(offset);

write_offset+= wave_local_offset;

active = false;

}

}

RWSortedKey.Store(write_offset * 4, key);

RWSortedData.Store(write_offset * 4, data);

uint write_offset = 0;

RWBucket.InterlockedAdd(bucket_index * 4 , 1, write_offset);

RWSortedKey.Store(write_offset * 4, key);

RWSortedData.Store(write_offset * 4, data);

Unoptimized Code Optimized Code

Data

Count

Not

Optimized Optimized

59019 13.05 us 1.05 us

473397 177.99 us 28.42 us

Tested on PlayStation5

IndirectArgs

Created using sort results.

Already evident from bucket sort result.

31

Software Rasterizer

Software Rasterizer announced to be 3 times faster.

We tested ComputeShader on older hardware, results 2.4 times faster.

Scanline version was fast, but not used due to artifacting.

Software Rasterizer requires same behavior as Hardware Rasterizer.

Fulfills DirectX rasterization rules test.

Visibility buffer output as 64-bit Atomic, shadow map output as 32-bit Atomic.

32

Rasterization Rules - Win32 apps | Microsoft Learn

https://learn.microsoft.com/en-us/windows/win32/direct3d11/d3d10-graphics-programming-guide-rasterizer-stage-rules

Sort GBuffer of Visibility Buffer

Sort after normal meshes of GBuffer rendered.
• If visibility buffer depth and GBuffer depth same, convert shader ID to 16-bit and output.

• Create 32-bit mask for subsequent rendering.

• Covert SV_Position to bits mapped in 8 x 4 render areas.

• Use WaveActiveBitOr in wave, representative output as InterlockedOr.

• Limit area the PixelShader can run.

Visualization of results separated by shadersGame Screen

Writing to GBuffer in Visibility Buffer

Render area with DrawInstanced
• Read internal VS 32-bit data, set unneeded to NaN and mask.

Recover structures needed for shading with PixelShader

• Restore material paraments/textures from bindless structures with StructuredBuffer or ConstantBufferView.

• Restore vertex structures using CulledInstanceInfo from primitive IDs of visibility buffer.

Shader Initialization Amount
• Dragon's Dogma 2 depends on the scene, GBuffer rendered with about 50 DrawInstanced.

• Monster Hunter Wilds executes about 60 GBuffer of visibility buffer.

GBuffer A shader's effect area in yellow Vertex shader output

Derivatives of Visibility Buffer GBuffer Shaders

RE ENGINE Uses Shader Graphs

Cases where UVs not modified are automatically resolved.

UV scale, rotation, translation have dedicated texture sampler node.

Complicated and Specialized Code

Each title handles code written by the game team.
Triplanars and heightmaps particularly difficult for them to handle.

Represented using SampleLevel.

35

A1

A2

Special Rasterizers

Use Special Rasterizers to recreate partial decals.

Maintains compatibility with traditional mesh representations.

36

Dragon’s Dogma 2 Results

Development build, meshlet rendering pipeline on/off performance test.

37

Meshlet

Rendering

Rendering

Commands

Rendering CPU Time GPU Time Video Memory

Disable 19510 5.502 ms 27.05 ms 6.821 GB

Enable 8172 3.891 ms 19.90 ms 5.960 GB

Tested on PlayStation 5

Monster Hunter Wilds

Handling more complicated scenes.

 Almost everything rendered uses visibility buffer.

38

Game Screen Meshlet + Visibility Buffer Rendering Disabled

A1

Two-phase Occlusion Culling

Visibility Buffer Rendering Pipeline of Monster Hunter Wilds

39

Instance Culling

Instance

Culling

Cluster Culling

Software Rasterizer

Hardware

Visibility Rasterizers

Generate

HiZ

Cluster Culling

Software Rasterizer

Hardware Visibility

Rasterizers

Generate

HiZ

Special

Rasterizers

Occlude Instances Occlude Clusters

Visibility Buffer Shaders

Visibility Buffer Shaders

Monster Hunter Wilds

Handling Visibility Buffers for Alpha Testing and Vertex Transform

Added support for two-phase occlusion culling.

Added support for SpeedTree version 8 middleware.

40

Everything Rendered Meshlet Special Rasterizers Disabled

A1

Hardware Visibility Rasters

Merge alpha testing and vertex transforms into Visibility Buffer.

DepthTest + RTV R32G32Uint

Use same sort algorithm as Special Rasterizers.

 Key = Shader ID: 8‖Depth: 3

More occlusion culling with improved system.

41

Visibility Pass G Buffer Pass Total

Dragon's Dogma 2 1.705 ms 7.977 ms 9.632 ms

Monster Hunter Wilds 3.127 ms 5.937 ms 9.064 ms

Async Compute Disabled ＠ PlayStation5 1664p

Improved occlusion culling Hardware Raster occlusion culling before improvement Game screen of created occluders

A1SL2

Pre-compute Vertex Transforms

Tried visibility buffer without separate vertex transform pass.

3-vertex transform in GBuffer costly.

Before rendering GBuffer, vertex transformations calculated using separate ComputeShader.

42

Sorting Sort

Create

Indirect

Args

Vertex

Transform
・・・・

Vertex

Transform

Precompute Vertex Transform Additional Pass

Visibility

Buffer

GBuffer

GBuffer

Preparing the Precompute Vertex Transform

43

Allocation count Allocation offset

Visibility Buffer GBuffer sorting runs at same time as pixel shaders.

Output requires vertex transform x 3 vertex calculation resources.

If PrimitiveID same within Wave, make Compact to reduce computations.

Console executed with wave64, PC wave amount depends on Hardware/Driver.

Game screen

Compaction of Wave Vertex Transforms

uint2 WaveCompactBufferWrite(RWByteAddressBuffer Counter,uint CounterOffset, RWStructuredBuffer<uint> WriteBuffer,uint WriteValue) {
bool active = true, owner = false;
uint count = 0, offset = 0;
while (WaveActiveAnyTrue(active)) {

count++; //uniform count
if (!active) continue;
if (WaveReadFirstLane(writeValue) == writeValue) {

owner = WavePrefixCountBits(true) == 0;
offset = count - 1; //offset count.
active = false; //in-active

}
};
uint allocate_offset = 0;
if (WaveIsFirstLane()) // compact write

Counter.InterlockedAdd(0, CounterOffset, allocate_offset);
offset += WaveReadFirstLane(allocate_offset) ;
if (owner)

WriteBuffer[offset] = WriteValue;
return offset;

}

44

Wave Output Sum

Returned offset

Post-processing of Vertex Transform Primitive IDs

Does not use wider compaction.

64-threads waves on consoles.
Sort and IndirectArgs creation method same as Special Rasterizers.

Compute Shaders of Vertex Transform

Splits 1 primitive into 3 vertices and create 3 threads.

 Outputs current frame HPOS, last frame HPOS, normal, and optional tangent.

45

Precompute Vertex Transform Storage Format

Screen-base vertex transforms use lots of memory.

Render resolution * 3 vertices * vertex size
Memory outside execution interval auto retrieved due to set as alias memory.

Monster Hunter Wilds:

16 bytes for each vertex.

46

name format

HPOS(xyw) 16-bit(half) + 16-bit(half) + 32-bit(float)

Previous HPOS(xyw) – HPOS(xyw) 10-bit(half) + 10-bit(half) + 12-bit(half)

Normal 10-bit(snorm) + 10-bit(snorm) + 10-bit(snorm) + 2(unused)

Precompute Vertex Transform Performance

47

Generate Key Bucket Sort indirectArgs

48 us 12.28 us 28.42 us 1.8 us

Vertex Transform

487.03 us

Fast at sorting, slow at vertex transforms.

Faster than directly calculating with GBuffer.

Consoles perform async precompute vertex transform before rendering meshes.

Before sorting, threads increased as there are no impedances from other meshes.

 This works great in Monster Hunter Wilds.

Tested on PlayStation 5

Improving Cluster Culling

Distant HLODs had many clusters, while foliage had only few.

Performance could not be maintained with a single distribution method.

Distribution of fixed granularity was inadequate.

Implemented new system that can distribute jobs amongst waves.

Ring Buffer structure using AtomicMin and InterlockedCompareExchange.

48

Phase 1 cluster culling process time

PlayStation 5 1664p

Scene 1 Scene 2

Ring buffer 0.4 ms 0.241 ms

1 instance 16 waves 0.945 ms 0.197 ms

1 instance 128 waves 4.42142 ms 0.456 ms

Scene 1 Scene 2

GPU Ring Buffer

Overview

JOB_EMPTY defined as 0. Can input jobs that are 32-bit and not a value of 0.

If unable to read/write, waits to be handled at next loop timing or by another wave.

Will continue until all jobs completed.

49

bool jobGathering(out uint job){
uint counts = WaveActiveCountBits(1);
uint readoffset = 0;
if (WaveIsFirstLane()){

RingBuffer.InterlockedAdd(JOB_RING_HEAD,counts,readoffset);
}
readoffset = WaveReadLaneFirst(readoffset) + WavePrefixCountBits(1);
readoffset&= WORK_BUFFER_SIZE_IN_DWORD-1;
RingBuffer.InterlockedMin(readoffset*4,JOB_EMPTY, job);
if (job != JOB_EMPTY){

int counts = (int)WaveActiveCountBits(1);
if (WaveIsFirstLane())

RingBuffer.InterlockedAdd(JOB_COUNT,-counts);
return true;

}
return false;

}

bool JobScattering(uint job){
if (job != JOB_EMPTY){

uint counts = WaveActiveCountBits(1);
uint writeoffset = 0;
if (WaveIsFirstLane()){

RingBuffer.InterlockedAdd(JOB_RING_TAIL,counts,writeoffset);
}
writeoffset = WaveReadLaneFirst(writeoffset) + WavePrefixCountBits(1);
writeoffset&= WORK_BUFFER_SIZE_IN_DWORD-1;
uint ret;
RingBuffer.InterlockedCompareExchange(writeoffset*4,JOB_EMPTY,job,ret);
if (ret == JOB_EMPTY){

uint counts = WaveActiveCountBits(1);
if (WaveIsFirstLane())

RingBuffer.InterlockedAdd(JOB_COUNT,counts);
return true;

}
}
return false;

}

Monster Hunter Wilds Results

Meshlet rendering pipeline on/off performance comparison in dev build.

50

Meshlet

Rendering

Rendering

Commands

Rendering CPU Time GPU Time Video Memory

Disable 8589 8.981ms 34.212 ms 5.290 GB

Enable 6940 5.228ms 27.605 ms 5.177 GB

Tested on PlayStation 5

Shadow Casting

RE ENGINE formerly used precompressed shadow maps for directional shadows.

Dragon's Dogma 2 and Monster Hunter Wilds have a dynamic 24-hour day/night cycle.

51

A1

Shadow Casting

Shadow Caster for meshlets implemented as single-pass culling.

Each culling stage uses frustum culling and zero-area-size culling.

Functions for static structures affected by shadow caches like spotlights.

Inadequate performance for fully dynamic lights like Directional Light.

52

Instance Culling Cluster Culling Software Raster

Hardware Raster

Other Shadow Caster

Generate Shadow Map Occluders from Depth

Uses camera depth reprojection from GPU-driven rendering.

Projects depth buffer onto shadow map to generate occluders.

53

Shadow Occluder

64 x 64 occlusion culling structure with mipmaps from depth buffer.

Red indicates foreground objects, anything behind it likely occluded.

54

Depth Buffer Cascade Occluder

Map 0

Cascade Occluder

Map 1
Cascade Occluder

Map 2

Shadow Casting

Only directional lights use occlusion culling.

55

Instance Culling Cluster Culling Software Raster

Hardware Raster

Other Shadow Caster

Shadow Map

Shadow Maps Using Occluders:

56

Depth Buffer Cascade Shadow

Map 0

Cascade Shadow

Map 1
Cascade Shadow

Map 2

Issue with Shadow Maps Outside Field of Vision

Combined with ray tracing, indoor areas became brighter.

Dragon's Dogma 2 uses raytracing for global illumination.

GI lighting reuses shadow map for shadows.
Unable to represent shadows outside field of vision.

57

Expanding Shadow Maps of Shadow Casts

Add previous frame's ray hit positions to render target of shadow map.

By inserting ray hit positions, visible area (black) expands.

58

Depth Reprojection Occlusion Map Ray Hit Position Injected Occlusion Map

Result After Change

Natural lighting after changes.

59

Depth Reprojection Depth Reprojection + Ray Hit Position

Results of Shadow Casts

60

3 Cascade Shadow with AsyncCompute

Primitives Input PA Time

Frustum Culling 13.54M Tris 6.71 ms

Depth Reprojection 7.93M Tris 4.83 ms

Meshlet processing time for Cascade Shadow Map 2.

Software

Raster

Hardware

Raster

Frustum Culling 0.381 ms 0.824 ms

Depth Reprojection 0.094 ms 0.304 ms

Tested on PlayStation 5

Processing time for shadow cast of one frame.

Deep World Shadows

Monster Hunter Wilds features vast vertical spaces.
Unsuitable for camera-based depth processes.
Render all mesh shadows above.

Severe geometry over-drawing.

61

Shadow Cast Update

Support vertex transformation and alpha testing.
Create buckets for sorting during cluster culling.

Maximum of 256 shader entries, return Prefix Count after culling.

62

Instance Culling
Cluster Culling

With Bucket
Software Raster

Hardware Rasters

Other Shadow Caster

Sorting
＋

IndirectArgs

Handling Geometry Over-draw

Use previous frame's shadows as occluder?

Reuse with creates artifacts and limited to single pass.

However, static camera resulted in high execution speed.

63

Depth Reprojection

Previous

Shadow Map

Combined

Occluder Map
Instance/Cluster Culling

And Draw

Two-phase Occlusion Culling

64

Camera Depth

Reprojection

Previous

Shadow Map

1st Phase

Occluder Map

1st Phase

Instance/Cluster Culling

And Draw
Static Meshlet

2nd Phase

Occluder Map

2nd Phase

Instance/Cluster Culling

And Draw
Mesh, Dynamic Meshlet,

Occluded Meshlet

Occluded

Meshlet

Change to two-phase occlusion culling for directional lights.

Shadow Cast Time

65

3 cascade shadow maps and 1 spotlight shadow map:

Primitives Input PA Processing Time

Depth Reprojection 10.65M Tris 3.19 ms

DR + SMI (artifact) 2.71M Tris 1.91 ms

DR+SMI + TPOC 3.30M Tris 2.28 ms

Tested on PlayStation 5

Optimizations for Shadow Casters in Dragon's Dogma 2

RE ENGINE maintains compatibility with all engine versions.

66

Optimization Features OFFOptimization Features ON

Summary

Meshlets
Two-phase Occlusion Culling
Visibility Buffer
Software Rasterizer

Improving performance and memory usage.

Features per-mesh or system-wide flags

that can be toggled easily.

67

Next Steps

Generate automatic seamless LODs to reduce workload.
Support subdivision surfaces and tessellation to improve product quality.
Implement automatic solutions for shader derivative issues.

Further investigate possible optimizations.

68

A1

References

・A Deep Dive into Nanite Virtualized Geometry

・GPU-Driven Rendering Pipelines

・Adventures with Deferred Texturing in Horizon Forbidden West

・Visibility Buffer Rendering with Material Graphs

・Improved Culling for Tiled and Clustered Rendering in Call of Duty: Infinite Warfare

・DirectX 12 Optimization Techniques on Biohazard RE:2 and Devil May Cry 5

・最新タイトルのグラフィックス最適化事例 [Examples of Graphics Optimizations in the Latest Titles], CEDEC 2018

70

	Slide 0: RE ENGINE Meshlet Rendering Pipeline
	Slide 1: Games Utilizing the Meshlet Rendering Pipeline
	Slide 2: Games Utilizing the Meshlet Rendering Pipeline
	Slide 3: Agenda
	Slide 4: RE ENGINE Team
	Slide 5: Previous Rendering Pipeline
	Slide 6: Rendering Vast Environments
	Slide 7: Switching to the Meshlet Pipeline
	Slide 8: Dragon's Dogma 2
	Slide 9: Meshlets
	Slide 10: Meshlet Structure
	Slide 11: Meshlet Clusters
	Slide 12: Compression Example: Vertex Colors
	Slide 13: Instances
	Slide 14: Meshlet Clusters
	Slide 15: Vertex Color Compression
	Slide 16: VertexColorCompression
	Slide 17: Flipping Binormals
	Slide 18: Compression Effect on File Size
	Slide 19: Two-phase Occlusion Culling
	Slide 20: Instance Structure
	Slide 21: Culling
	Slide 22: Distribution of GPU Processing Granularity for Cluster Culling
	Slide 23: Distribution of GPU Processing Granularity for Cluster Culling
	Slide 24: Structure of Culling Results
	Slide 25: Hardware Raster
	Slide 26: Mesh Shader
	Slide 27: Special Rasterizers
	Slide 28: GenerateSortKey
	Slide 29: Bucket and Sort
	Slide 30: Sort
	Slide 31: IndirectArgs
	Slide 32: Software Rasterizer
	Slide 33: Sort GBuffer of Visibility Buffer
	Slide 34: Writing to GBuffer in Visibility Buffer
	Slide 35: Derivatives of Visibility Buffer GBuffer Shaders
	Slide 36: Special Rasterizers
	Slide 37: Dragon’s Dogma 2 Results
	Slide 38: Monster Hunter Wilds
	Slide 39: Two-phase Occlusion Culling
	Slide 40: Monster Hunter Wilds
	Slide 41: Hardware Visibility Rasters
	Slide 42: Pre-compute Vertex Transforms
	Slide 43: Preparing the Precompute Vertex Transform
	Slide 44: Compaction of Wave Vertex Transforms
	Slide 45: Post-processing of Vertex Transform Primitive IDs
	Slide 46: Precompute Vertex Transform Storage Format
	Slide 47: Precompute Vertex Transform Performance
	Slide 48: Improving Cluster Culling
	Slide 49: GPU Ring Buffer
	Slide 50: Monster Hunter Wilds Results
	Slide 51: Shadow Casting
	Slide 52: Shadow Casting
	Slide 53: Generate Shadow Map Occluders from Depth
	Slide 54: Shadow Occluder
	Slide 55: Shadow Casting
	Slide 56: Shadow Map
	Slide 57: Issue with Shadow Maps Outside Field of Vision
	Slide 58: Expanding Shadow Maps of Shadow Casts
	Slide 59: Result After Change
	Slide 60: Results of Shadow Casts
	Slide 61: Deep World Shadows
	Slide 62: Shadow Cast Update
	Slide 63: Handling Geometry Over-draw
	Slide 64: Two-phase Occlusion Culling
	Slide 65: Shadow Cast Time
	Slide 66: Optimizations for Shadow Casters in Dragon's Dogma 2
	Slide 67: Summary
	Slide 68: Next Steps
	Slide 69
	Slide 70: References

