
REAC 2025
Questions for Mishima Hitoshi

Question Answer

Is there not a potential performance issue with

using such small 8x4 regions for the visibility

buffer resolve. If I'm not mistaken using triangle for

these will cause unfilled quads along the triangle

diagonals. Did you consider using Rect primitives

for them instead on console to avoid this issue?

As you have mentioned, it's true that we have

seen some performance issues along the

diagonals.

With regards to using rects instead, we simply

haven't had a chance to properly measure the

performance differences yet. If it's at all similar to

the fullscreen triangles we use for post

processing, then I would expect a few %

improvements in performance.

Unfortunately DirectX doesn't offer rect as an

option for topology. We tried addressing this

before by replacing our two triangles with a single

larger triangle and using clip distance to trim said

larger triangle, but saw no measurable differences

in performance.

Additionally, we've experimented with a compute

shader version of this in our internal engine tests

but it still couldn't beat the pixel shader's speed.

you credit quite a few English presentations in

your slides, do you find access / translation to

these to be a problem? I imagine in the reverse

there are also a ton of quality talks in Japanese

that we are missing out on because we aren't

being exposed to them. (This is perhaps just a

general question for the chat too) Are there any

resources attempting to bridge that gap?

There isn’t any particular gap when it comes to

technical matters. However, there is the issue of

good papers in non-mainstream languages getting

overlooked. I believe that advancements in

information science will help resolve this problem.

Things have definitely gotten much easier

compared to before.

I had a hard time following the pre-transformed

vertex section. Was this run as a prepass in a

compute shader, or done when the mesh shader

runs? Are all the verts streamed out to a large

buffer? If so, did you/do you have any concerns

about bandwidth and memory usage? (Also

thanks for the shout out)

First, we use mesh shaders to render the Visibility

Buffer.

Second, using a compute shader, we perform a

pre-transform of vertices for the GBuffer based on

the Primitive IDs from the Visibility Buffer.

Finally, in the GBuffer pass, we reference both the

Visibility Buffer and the PreTransformed vertices.

Here, the PreTransformed vertices are specifically

for the GBuffer.

The second step might seem unnecessary, but

computing vertex transforms for all three vertices

per pixel would be too computationally expensive.

The issue lies in memory consumption.

If compacted efficiently, it can be reduced to 1/32

or 1/64 (depending on wave count), but in the

worst case—where each pixel contains a

triangle—it becomes pixel resolution × 3 vertices ×

Question Answer

vertex size.

Fortunately, our engine uses alias memory, so

although it’s an extremely large memory block, it's

only consumed for a specific part of the rendering

frame.

Do y'all have a special approach for far sun

shadows, i.e. beyond the final cascade?

Yes. SDF Shadow has been adopted.

Do you have fully skinned foliage or some are

mesh hierarchies with a skeleton that you deform

to circumvent the vertex/meshlet skinning pass?

(I’m thinking trees, for example)

We're not using foliage with skeletal animation,

but we do have features like movement based on

a rotation origin called a "pivot", as well as some

SpeedTree features.

In terms of functionality, rendering Skinned

Meshes is supported. However, the foliage system

itself does not support skeletal animation.

did you have any issues with “small” clusters, for

example what happens if you have a lot of

clusters with less than 128 triangles each?

The main issue lies with foliage. The polygon

density of grass and leaves is low, and the cluster

bounding boxes are not sufficiently small relative

to the size of the instance bounding boxes.

For such meshlet clusters, running cluster culling

tests may be pointless.

In the main branch of the engine, we’ve

implemented a mechanism that bypasses the

cluster culling test based on the size difference

between the instance and cluster bounding boxes.

In MH:World the season system changes are very

abrupt, changing almost instantly. Was this an

artist or technical choice?

Unfortunately this was a choice made by the

game development team so I am unaware of the

reasons for this decision.

I'm not sure I understand the base pass

rasterization. It looks like it's done on a per-tile

basis? So is it that the SW rasterization is

performed fully in the pixel shader?

By "base rasterization", are you referring to the

visibility buffer?

The visibility buffer stores data such as the

Zprepass (32-bit), cluster indices (25-bit), and

triangle indices (7-bit).

These are generated using either a hardware or

software rasterizer.

Unlike tiled approaches, this processing is done

on a single full-screen buffer.

The GBuffer is generated using a pixel shader.

vendors recommend to output 124 triangles

instead of 128 in mesh shaders, did you notice

any performance differences because of it?

We may be operating on older information, but I

have heard that NVIDIA recommends outputting

126 triangles.

We tested 126 triangles on NVIDIA hardware and,

while it definitely seemed faster, the performance

difference wasn't too significant. Of course this

could have just been a problem with our

implementation.

Question Answer

Have you considered having different instance

encodings depending on the instance type, e.g: an

instance coming from a GPU placement system

where you could afford to compress the world

matrix VS an instance coming from an artist-

placed entity that should retain a precise

transform

At this point, we haven’t implemented that level of

optimization. However, when placing a truly

massive number of instances, using float4x3 can

be quite large, so switching to a more compact

format might be a good idea.

Personally, I sometimes wonder whether it's better

to store the data using fixed-point floats.

In older engines—like those from the PS3/Xbox

360 era—grass positions were sometimes stored

using 8-bit formats.

RE4 has way better performance in mid-level

hardware than both DD2 and MHWilds. What

would you say is the limiting factor in the open

world games? Do they need more refined

occluders which is not possible for such vast

spaces?

I apologize, but we will refrain from responding as

it is difficult to comment on this matter.

Have you considered directly shading the visibility

buffer (read triangle id, reconstruct triangle ,

interpolate and shade) instead of generating an

intermediate gbuffer for deferred shading?

No, we haven’t tried that yet.

That said, our engine does have a pass that

performs forward shading. It might be interesting

to try it there and see if it improves performance.

Currently, the forward shading portion using

special rasterization is implemented by

transforming vertices with a mesh shader and

applying forward shading directly in the pixel

shader.

You mentioned all large meshes use a single

mesh shader in DD2, does this mean you have a

unified meshlet data format?

Yes, that’s correct. The meshlet data is

standardized.

More precisely, we use dynamic branching based

on flags in the meshlet header to reconstruct the

data.

As for vertex tangents, there's a project setting

that allows you to either completely remove them

or keep them.

If the project is configured to not use tangents at

all, the meshlet structure becomes static in that

regard, and the shader is compiled accordingly.

What's the process for game teams for requesting

+ receiving engine features look like if they're

prohibited from changing code?

Is it "more" expected that content teams work

around limitations virtually all of the time

There are three types of requests: requests

submitted in batches by the TAs in the

development department, joint development

based on long-term interdepartmental plans, and

emergency responses for specific game titles.

Most requests come from TAs, but emergency

responses often take higher priority, which can

cause delays.

In such cases, the engine team and the title team

usually coordinate to implement special features

or optimizations.

Question Answer

On the title side, we’re gradually expanding the

range of what they can use.

For shaders, some users are now writing compute

shaders and outputting to ByteAddressBuffers or

Textures.

These results can then be plugged into the

Shader Editor as textures or buffers.

Recently, we’ve also added functionality to define

custom shading pipelines—for example, to

achieve Toon Shading or other visual styles.

