
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++

Max Bukhalov | Egor Orachev

Geometry Rendering and Shaders Infrastructure in
Warhammer 40000: Space Marine 2

25

enginearchitecture.org

About the speakers

REAC 2025

Max Bukhalov
Graphics Programmer
Since 2019 at Saber Interactive

Shaders infrastructure

Egor Orachev
Graphics Programmer
Since 2022 at Saber Interactive

Geometry rendering

About this talk

REAC 2025

The context of engine development and project features

Focus on rendering engine architecture and systems design

No hard science nor state of the art rendering techniques

Not how to do it right, but how we did it and what lessons we learned from it

The Swarm Engine

REAC 2025

Proprietary in-house engine from Saber

Features full development tool chain

Over 2M lines of code

~130+ engine, tools, infrastructure developers
~450+ games developers

3+ games developed in parallel

Used to ship games, not the technology as is

Projects

REAC 2025

SPACE MARINE 2 ROADCRAFT JURASSIC PARK:
SURVIVAL

TOXIC
COMMANDO

WORLD WAR Z

2019 2024 2025 TBATBA

timeline

Swarm Engine 1.0 Swarm Engine 2.0

Space Marine 2

REAC 2025

First studio project developed on Swarm
Engine for 9th generation consoles

Required a lot of work to bring the engine up
to visuals and features that game needs

- Some aspects game specific
- Some are relevant for almost all modern

games

In the following slides we want to cover:
- Geometry engine pipeline
- Shaders infrastructure

Geometry rendering pipeline

REAC 2025

Historical perspective

REAC 2025

Advanced Graphics Techniques Tutorial:
High Zombie Throughput in Modern Graphics
Anton Krupkin, Denis Sladkov
GDC 2019

Target: PS4 / XBOX ONE / PC

Framerate: 30 FPS

Forward+ rendering pipeline

2 frames of latency

Visibility test in compute shader

Multi-threaded command list generation

Historical perspective: frame structure

REAC 2025

Game logic
update

Fetch
user
input

ZPass Shading
Passes

Visibility
culling

Collect render
requests

Transform,
cameras
update

Submit
culling
request

Submit
draw
calls

Submit
culling
request

Submit
draw
calls

ZPass Shading
Passes

Visibility
culling

Main + Worker threads

Render thread

GPU

Readback
results

2-frame latency
30FPS

66+ms critical path

Steps required to render a single frame

Submit
draw
calls

Game logic
update

Fetch
user
input

Transform,
cameras
update

Submit
draw
calls

Historical perspective: code structure

REAC 2025

Heavily object oriented renderer code ⚠

Anim instance
- Basic “object” in render engine for drawing

Acts a bit like
- MeshFilter and MeshRenderer in Unity
- PrimitiveSceneProxy in Unreal

Used to render
- Animated geometry
- Vertex instanced vegetation
- Static scene merged vertex soup

Anim template

Anim instance

Split instance

Pass list

Pass

Split

Material

Const buffer

Descriptor sets

PSO

N

N

1

N

N

1

1

1

1

1

1

Demands and new challenges

REAC 2025

Geometry / environment

Indoors and vast outdoors
Detailed scene models

>60M triangles before culling
High draw distances

1000+m
Dense vegetation, debris

>10 instances per m^2

Hardware / performance

Target: PS5 / XBOX X|S / PC
Framerate: 30 / 60 FPS
Min spec:

RAM 8 GB
VRAM 6 GB
GeForce GTX 1060
DirectX 12

Simulation / shading

Tyranids swarms
1K+ instances

Flocking rendering
10K+ instances

Cloth simulation
100KB per instance

Destructible obstacles
~50 sim pieces

Blood and dirt covering
Gibbing & gore system

Anim instance dilemma

REAC 2025

God class antipattern example

Architectural flaws
- Lack of isolation
- Leaks to scripting code
- Mix of new and legacy code

Performance considerations
- 1500+ bytes sizeof class only
- Duplication of data from template
- Data scattered in memory

We need somehow to evolve this system

Anim instance

Instance data

Material data HAL/RHI
cached data

Game data

Animation system

Game code
(scripting)

Game code
(native)

Hier transform update Render engine

Simulations

Where should we go?

REAC 2025

CPU-driven path

+Easy to develop
+Fewer code modifications
+More game features

-CPU bottleneck
-Memory consumption

*Poor performance on early
test scene with preliminary art
setup

Where should we go?

REAC 2025

CPU-driven path

+Easy to develop
+Fewer code modifications
+More game features

-CPU bottleneck
-Memory consumption

*Poor performance on early
test scene with preliminary art
setup

GPU-driven path

+GPU bottleneck
+Unlocks optimizations

-Requires huge refactoring
-Less flexible

*Theoretically possible, but
involves a lot of “client” code
rework

Where should we go?

REAC 2025

CPU-driven path

+Easy to develop
+Fewer code modifications
+More game features

-CPU bottleneck
-Memory consumption

*Poor performance on early
test scene with preliminary art
setup

Hybrid path

+Unlock GPU performance
+Benefit CPU flexibility
+Moderate changes

-Maintain both paths
-Balance between CPU and
GPU path

GPU-driven path

+GPU bottleneck
+Unlocks optimizations

-Requires huge refactoring
-Less flexible

*Theoretically possible, but
involves a lot of “client” code
rework

Hybrid renderer

REAC 2025

Conservative renderer evolution

Focus on game features first

Reduce the amount of unnecessary refactoring
- Keep legacy structures intact
- Adopt them for new needs

Support both rendering paths
- Gameplay driven CPU path
- “Static” geometry GPU path

CPU
rendering path

Versatility

Multi-core
scalability

Frequent
instance data

update

Rich gameplay
features

Demands CPU
processing

GPU
rendering path

Performance

High
throughput

Simplified
instance data
management

Limited
customization

Cheap for CPU
timings

Hybrid renderer: decoupling

REAC 2025

Anim instance

Material data HAL/RHI
cached data

Game data

Instance data manager

Anim instance

Instance data

Material data HAL/RHI
cached data

Game data

Anim instance

Material data HAL/RHI
cached data

Game data

Instance data
Instance data

Instance id + archetype

Move instance rendering related data from anim
instance to separate manager

Relatively moderate refactoring work

Pros:
- Anim instance can be still used in “client” code

without changes
- Instances can be created without anim instance

creation
- Instances can be rendered using single “proxy”

anim instance

Cons:
- Anim instance still complex class

Hybrid renderer: frame structure

REAC 2025

Steps required to render a single frame

Game logic
update

Fetch
user
input

ZPass Shading
Passes

Visibility
culling

Collect render
requests

 (CPU + GPU)

Transform,
cameras
update

Submit
culling
request

Submit
draw
calls

Submit
culling
request

Submit
draw
calls

Main + Worker threads

Render thread

GPU

Readback
results

GPU
instancing ZPass Shading

Passes
Visibility
culling

GPU
instancing

2-frame latency
30FPS / 60 FPS

66+ms / 33+ms critical path Modified steps

Submit
draw
calls

Game logic
update

Fetch
user
input

Transform,
cameras
update

Submit
draw
calls

Hybrid renderer: stack overview

REAC 2025

Draw calls processing
Collection, sorting,

recording

Visibility system
Culling, HZB, readback

Instance data
management

Allocation, update, access

Draw Calls Batching
Collecting, sorting, grouping

GPU instancing
Spatial culling, LOD, grouping

Static
meshes

Procedural
placement ScattersECS

renderActors Mesh
particles

Resources
Anim templates

Materials
Shaders
Textures

HAL / RHI

frontend
backend

Hybrid renderer: backend

REAC 2025

Static
meshes

Procedural
placement ScattersECS

renderActors Mesh
particles

Resources
Anim templates

Materials
Shaders
Textures

HAL / RHI

frontend

Draw calls processing
Collection, sorting,

recording

Visibility system
Culling, HZB, readback

Instance data
management

Allocation, update, access

Draw Calls Batching
Collecting, sorting, grouping

GPU instancing
Spatial culling, LOD, grouping

backend

Instance data management

REAC 2025

StructuredBuffer<float4>

Static data Dynamic data

Global storage for all instances gpu data

Implicitly divided into two parts
- Static part has fixed budget
- Dynamic part can grow and shrink on demand

Manages
- Allocation, deletion, update
- Instancing payloads

Same as ByteAddressBuffer but with explicit alignment

Instance data management: static data

REAC 2025

StructuredBuffer<float4>

Dynamic dataStatic data

Quaternion ScaleCustomization
indexRelative position Flags

float4

16x3 bits 9 bits 7 bits 9+14+9 bits 1+10+7+7+7 bits

Static scene Procedural placement

Half-float per component,
position relative to a regular
grid cell, where the instance is
located.

Processing flags, is instance
hidden, cast shadows, is
cached in static shadow map,
scale compression sign

0 to 127 index in a
customization palette, used to
adjust shading of the instance
without de-instancing

Common 32 bit quat
compression with mean 0.08
deg error

Full precision uniform scale or
compressed non-uniform scale
tuned for cases with 10% largest
deviation per component

Static instance data

Packed data on disc, read once on scene loading Pool for runtime allocation of chunks with static instances, generated in compute shader

Uploaded using
staging buffer

Pool size estimated
on scene start up

~5MB, 300K instances ~6MB, 400K instances

Instance data management: dynamic data

REAC 2025

StructuredBuffer<float4>

Static data Dynamic data

Layout offsets table

Covering

Scorches

Fresnel highlight

Instances 1..An

Layout offsets table

Dissolve

Instances 1..Bn

Transform Matrix

Destructible (skin compound)

ClothSkinning data

Destructible (skin compound)

Cloth

Smearing

Dissolve

Skinning data

Smearing Covering

Scorches

Fresnel highlight

Transform Matrix

Archetype A Archetype B

Ve
ct

or
<fl

oa
t4

>

Ve
ct

or
<fl

oa
t4

>

Animation
prop Cloth prop

Dissolve
prop

Transform
prop

Scorch
prop

Highlight
prop

Covering
prop

Transform
prop

Scorch
prop

Instance

Instance

Frontend data

Archetype A, id

Archetype B, id
Instances data updated
by frontend, after game
/ sim logic updated

Render engine exclusive write-only data, prepared for being copied for drawingNo strict layout, managed by VFX, Scripting, ECS

Archetype and unique id
assigned on instance creation

Unused components not allocated, thus table
with offsets is used

Instance data management: dynamic data

REAC 2025

StructuredBuffer<float4>

Static data Dynamic data

Layout offsets table

Covering

Scorches

Fresnel highlight

Instances 1..An

Layout offsets table

Dissolve

Instances 1..Bn

Transform Matrix

Destructible (skin compound)

ClothSkinning data

Destructible (skin compound)

Cloth

Smearing

Dissolve

Skinning data

Smearing Covering

Scorches

Fresnel highlight

Transform Matrix

Archetype A Archetype B

Ve
ct

or
<fl

oa
t4

>

Ve
ct

or
<fl

oa
t4

>

Scratch Buffer

Instance A Instance A Instance B Instance B… …

Render engine exclusive write-only data, prepared for being copied for drawing

~10MBCopy visible instances on this
frame to scratch buffer

Upload scratch buffer to gpu
buffer using async transfer queue

~0.08ms on PS5 / XBOX X|S
~1ms on PC, latency hidden

Instance data management: instancing payloads

REAC 2025

StructuredBuffer<float4>

~30MB x 2
GPU instancing payloads CPU instancing payloads

Static instance payload

Generated in compute shader (for each camera)
Allocated using atomic counter

Generated by draw calls batcher on CPU (for each camera),
Allocated using atomic counter, placed after static payloads

float4

Instance
id Grid Idx LOD

transition Opacity Wind
pivot

30 bits 2+16+16+16 bits 1+8 bits 4 bits 19 bits

Billboard

16 bits

Dynamic instance payload
float4

Instance
id

Material
override

id

LOD
transition Opacity Wind

pivot

32 bits 32 bits 1+8 bits 4 bits 19 bits

Unused

32 bits

Global instance id
in static data part
of gpu buffer

Cell id of a regular
grid where instance
is stored for
position unpacking

Sign of transition
(source or target
LOD) and current
phase for dithering

Extra opacity
modifier for
dithered
transparency, sets
blur bit in gbuffer

Id of instance
within region of
its archetype in
dynamic part of
gpu buffer

Id of material
override data, stored
in global buffer, used
to adjust shading
without de-instancing

Id of cached
wind data, used
to animate
vertices on
vegetation

Billboard id, set
for distant
objects, rendered
separately

Payloads generated per
camera for visible instances,
for all cameras

Supports up to 64 cameras,
5-6 used on average

In case of overflow, buffer is
grown, payloads
re-generated

Visibility system

REAC 2025

GPU-powered culling in a compute shader

~0.5ms whole culling process

Scene setup
- 100K+ boxes for culling on large scene
- ~1K Manual low poly occluders
- Roughly 40MB of GPU memory

HZB culling
- Reprojected depth + occluders
- 30-50% culled after frustum culling

Resulting data
- Readback for CPU processing
- Propagate further for GPU instancing

Draw calls batching

REAC 2025

Draw requests collection and processing for
CPU instancing

The purpose of this system
- Collect draw requests
- Filter, sort and process them
- Group and prepare params for draw calls

In a sense similar to
- Unity SRP batcher
- Unreal MeshDrawCmd batching

In functional terms
- Gather, map and reduce by key
- But optimized for multicore scalability

Draw

Draw calls batcher

Draw table Instancing
payloads

Draw
Draw

Draw
Draw

Draw

Draw
Draw

Draw

Actors
rendering

ECS
rendering

Mesh particles
rendering

Draw calls batching: draw request

REAC 2025

Instance id

Material override id

Template id Split id

Material id Prop mask

Cameras mask

Wind pivot Opacity LOD transition

Draw request

Header

Cached instancing bucked id

Captures a request to draw a single split of an
instance into a number of cameras

Has header to uniquely identify instancing
bucket

48 bytes per draw request
Up to 10K draw requests in a frame
3-4K unique buckets on scene

Draw calls batching: collection

REAC 2025

Chunk

Thread

Thread

Thread

Thread

Chunk

Chunk

Chunk

Draw Draw Draw

TLS queue
Chunk

Chunk pool Custom TLS queue for request collection

64 requests per chunk
Up to 200 chunks in a frame
Up to 24 workers (engine limit)

Under 1MB of memory whole pool size

*We had to tune this performance due to cache
misses and high contention on requests
collection in clients system

Draw calls batching: unfolding

REAC 2025

Chunk

Thread

Thread

Thread

Thread

Chunk

Chunk

Chunk

Draw Draw Draw

TLS queue
Chunk

Chunk pool

64 draws per chunk
Up to 200 chunks

Draw Draw Draw Draw Draw Draw Draw …

Unfold chunks
MT

Bucket 1 Bucket 2 Bucket 3

Groups all draw requests per bucket

Uses atomic operations and prefix sum for
offsets evaluation

~0.5MB for unfold space

Draw calls batching: aggregation

REAC 2025

Draw Draw Draw Draw Draw Draw Draw …

Aggregate buckets
MT

Bucket 1 Bucket 2 Bucket 3

Draw info Draw info Draw info Draw info …

Payloads offset + count
(Cam 1) Instangin payloads allocated

In instancing data manager and
filled up directly into staging bufferPayloads offset + count

(Cam 2)

…

Sort and aggregate draw request to
finally prepare parameters for draw
calls creation

Allocate instancing payloads per
bucket per camera

~100 buckets used on average
~1MB of payloads data

Payloads written directly to mapped
pointer to upload to GPU

GPU instancing

REAC 2025

Instancing using compute shader

Spatial culling
- Sparse culling of large visibility blocks
- Culling of instance blocks
- Culling of individual instances

Features
- LOD evaluation, density reduction
- Opacity, transition phases
- Wind cache, material overrides

Outputs table of draw calls parameters for
each camera for DIPs creation on CPU

3

2

4

5

1 6

1 2 3 4 5 6

Visibility block 2

Visibility block 1

Instance block 1

Instance block 2

Instance block 3

Instance block 4

Visibility blocks used for spatial
locality and sparse culling

In memory instances
packed together,
accordingly to archetypes
and spatial locality

Instance blocks group instances of
the same archetype

GPU instancing: processing

REAC 2025

Visible blocks set,
cameras, HZB

~0.4ms whole processing
- 0.1ms to unwrap visible blocks
- 0.2ms to unwarp instances blocks
- 0.1ms to process instances

Additional frustum and HZB culling for
individual instancis

Up to 64 cameras support
Up to 8 LOD levels + billboard per mesh
Up to 2K unique mesh types

<1MB/camera of draw calls parameters for
readback on average

Vis b. Vis b. Vis b. Vis b.Vis b.

Inst b. Inst b. Inst b. Inst b.Inst b.

Inst Inst Inst InstInst

Readback table Instancing
payloads

…

…

…

Draw calls processing

REAC 2025

Thin layer just above HAL

Classic draw instanced primitive (DIP)
- Const buffers with material data, etc.
- Pipeline state object
- Offset to instancing payload
- Number of instances
- Push constants

Captures a request to render a piece of
geometry into single pass of a single camera

All collected DIPs are sorted and recorded into
command buffers for execution

Draw call assembly

REAC 2025

Material

Split

DIP Setup

Instances buffer

Instances payloads buffer

Instance Instance Instance Instance Instance

Payload Payload Payload

Shader 1

Shader 2

Vertex Format

Vertex Buffers

ZPass DIP

Payload offset +
count

GBuffer

Distort

DIP

DIP

PSO, CB

PSO, CB

PSO, CB

…

……

…

Split Inst

Generated by draw calls batcher or GPU
instancing shader for each camera view

Hybrid renderer: frontend

REAC 2025

Resources
Anim templates

Materials
Shaders
Textures

HAL / RHI

Draw calls processing
Collection, sorting,

recording

Visibility system
Culling, HZB, readback

Instance data
management

Allocation, update, access

Draw Calls Batching
Collecting, sorting, grouping

GPU instancing
Spatial culling, LOD, grouping

backend

Static
meshes

Procedural
placement ScattersECS

renderActors Mesh
particles

frontend

Actors rendering | CPU path

REAC 2025

Uses anim instance under the hood

Conforms existing client code

Has script bindings, cinematics support, etc.

Allows to:
- Change materials
- Apply parameter overrides
- Modify visibility state
- Tweak transforms of individual splits

Suffers from memory overhead and CPU
bottleneck if rendered too much instances

ECS render | CPU path

REAC 2025

Entities rendering using ECS framework

Renders 10K+ entities

Uses >20 components written in DDL for
rendering

Requires >40 systems to process rendering,
data update, clean-up, etc.

ECS render: framework

REAC 2025

We use our custom in-house Saber ECS
implementation

It provides
- Runtime for ECS world
- Custom DSL for declarations
- Code generator
- Automatic systems scheduling
- Script bindings
- Editor reflection

More details about Saber ECS framework in
recent GDC talk

The ECS Behind Warhammer 40k:
Space Marine 2
Sergei Avdeev
GDC 2025

ECS render: data definition

REAC 2025

Declared in .ecs files with custom DSL
Used to auto generate C++ code and metadata for runtime and editor

.ecs file (DSL) Auto generated C++

ECS render: systems definition

REAC 2025

Systems interface with execution mode and access declared using the same DSL
Auto generates C++ system declaration, scheduling info, OnUpdated stub

.ecs file (DSL) Auto generated C++

ECS render: final notes

REAC 2025

Re-implemented a lot of logic from anim
instance rendering pipeline

Worked extremely well for us
- Add features on demand
- Split work among render and engine team
- MT parallelisation out of the box

Minor problems
- Divergence of logic
- Thread-safety in some cases
- Performance for heavy entities

Static meshes | GPU path

REAC 2025

Assets are carefully created in DCC and
individual objects are marked up for exporter

On export meshes exported separately and
assets transformed into a prefab

Prefab can be placed using level editor

Individual pieces are individual gpu instances
- LOD applied on per instance basis
- Handles up to 250K+ instances

Automatically packs instances from all
prefabs on scene cooking

Placement | GPU path

REAC 2025

On demand instances generation using
compute shader

Uses terrain or placement painted masks to
generate instances at runtime

Supports up to 16 individual masks

Type of meshes, probability, density
configured in distribution settings

Generation process amortised
- Takes <0.5ms in async compute
- Cache instances near main camera
- >200K instances fits into cache

Scattering | GPU path

REAC 2025

Scattered by some pattern small debris

Authored using special brush tool inside level
editor

Scatters static instances across geometry
using some distribution settings

All scattered instances packed on scene
export and loaded on scene loading

Supports instances density reduction during
LOD evaluation

Which rendering path to choose?

REAC 2025

Rendering path is defined by type of the geometry placed in editor or created from game code

Render engine does no automatic switching between CPU and GPU paths
Thus it is up to “client” to choose which path his geometry will use

How to choose
- In 90% of cases static geometry is the best choice
- If you need to simulate or control large amount of entities use ECS path
- If you need full scripting, cinematic control and material access – Actor is only an option
- Other cases are too specific and handled on individual basis

Drawbacks
- In worst case scenario all scene end ups in Actors
- Requires careful profiling of performance state ⚠

Conclusion on geometry section: positives

REAC 2025

We evolved system to suit title requirements

“Instancing everything” worked for us

Hybrid pipeline worked well
- Moderate refactoring of existing code
- No breakage of existing code
- Incremental implementation with individual steps evaluation

System frontend worked well
- Existing actors pipeline not modified
- Supported ECS rendering pipeline
- Convenient editor workflow for static geometry

- It is more artistic driven (prefabs, mask painting)
- Benefits having custom editor solution

Conclusion on geometry section: things to consider

REAC 2025

CPU bottlenecks DIPs generation on heavy scenes
- Requires art setup tuning

We have to maintain both systems
- Divergence in render features is unavoidable

Performance of culling is still debatable
- Manual occluders not always applicable
- Large chunks of meshes still not culled out

- In some cases instances not small enough

Now it is reasonable to move towards full GPU path
- Half of the work is done, but there is still much to be done

Shaders infrastructure

REAC 2025

Shader infrastructure: Before SM2

REAC 2025

Architecture was pretty much the same since WWZ

Space Marine 2 demands complex materials and quite large scenes

Important to not limit artists and developers while still hold on to performance

Shader infrastructure: Principles

REAC 2025

 Key principles that we didn’t want to lose:
− Simple shader authoring
− Simple maintenance
− Keep logic duplication as low as possible
− Simple interaction with shaders in c++ code
− Simple material setup for artists
− Fully automated build process

 New principle:
− Minimize large system changes, try work with what we got

Architecture: Shaders

REAC 2025

HLSL with Macro magic

Support different API
− DX12
− Vulkan
− Xbox
− Playstation

Uber shader approach

Architecture: Passes

REAC 2025

Pass - logical unit of shaders of different types

Examples:
− SSAO
− Particles
− Water
− Lit skinned pass

Shaders

Vertex

Pixel

Domain

Hull

Geometry

Compute

Setup

Defines

Vertex format

Render state

RT format

State flags

Usage

Desc

<var 1>

<var 2>

<var 3>

<var n>

Pass

Render flags

Architecture: Material passes

REAC 2025

Only 5 out of 80
1 heavy and 4 relatively light
Draw calls are put into specific queues no direct
way to execute a draw
Can deduce permutations

Examples:
− vfx pass
− lit skinned pass

Shaders

Vertex

Pixel

Domain

Hull

Geometry

Compute

Setup

Defines

Vertex format

Render state

RT format

State flags

Usage

Desc

<var 1>

<var 2>

<var 3>

<var n>

Pass

Render flags

Architecture: Engine passes

REAC 2025

Setup from cpp code
Not always computes
Can not deduce permutations

Example:
− fill

Passes usually relatively lightweight, but we have a
quite heavy passes:

− terrain
− water
− particles
− trail

Shaders

Vertex

Pixel

Domain

Hull

Geometry

Compute

Setup

Defines

Vertex format

Render state

RT format

State flags

Usage

Desc

<var 1>

<var 2>

<var 3>

<var n>

Pass

Render flags

Architecture: Pass desc

REAC 2025

Written in text format

− bool
− float (float2, float4)
− int (int8, int4)
− enum
− color

Shaders

Vertex

Pixel

Domain

Hull

Geometry

Compute

Setup

Defines

Vertex format

Render state

RT format

State flags

Usage

Desc

<var 1>

<var 2>

<var 3>

<var n>

Pass

Render flags

Architecture: Pass desc

REAC 2025

Exposed to artists (only material passes)

Shaders

Vertex

Pixel

Domain

Hull

Geometry

Compute

Setup

Defines

Vertex format

Render state

RT format

State flags

Usage

Desc

<var 1>

<var 2>

<var 3>

<var n>

Pass

Render flags

Architecture: Pass desc

REAC 2025

Exposed to programmers

Shaders

Vertex

Pixel

Domain

Hull

Geometry

Compute

Setup

Defines

Vertex format

Render state

RT format

State flags

Usage

Desc

<var 1>

<var 2>

<var 3>

<var n>

Pass

Render flags

Architecture: Pass setup

REAC 2025

Describes pass in boolean expressions using
references from external structures

All pass information depends on

Parameters:
From pass desc:

− sdr

Common:
− opt (options)
− env (environment)
− platform (platform, api vendor)
− mtl (addition material data from DCC)
− split (geometry data)

Shaders

Vertex

Pixel

Domain

Hull

Geometry

Compute

Setup

Defines

Vertex format

Render state

RT format

State flags

Usage

Desc

<var 1>

<var 2>

<var 3>

<var n>

Pass

Render flags

Architecture: Pass setup

REAC 2025

Defines (hlsl compilation parameters)

Max 256 per pass Shaders

Vertex

Pixel

Domain

Hull

Geometry

Compute

Setup

Defines

Vertex format

Render state

RT format

State flags

Usage

Desc

<var 1>

<var 2>

<var 3>

<var n>

Pass

Render flags

Architecture: Pass setup

REAC 2025

Vertex format

Shaders

Vertex

Pixel

Domain

Hull

Geometry

Compute

Setup

Defines

Vertex format

Render state

RT format

State flags

Usage

Desc

<var 1>

<var 2>

<var 3>

<var n>

Pass

Render flags

Architecture: Pass setup

REAC 2025

Render state

Shaders

Vertex

Pixel

Domain

Hull

Geometry

Compute

Setup

Defines

Vertex format

Render state

RT format

State flags

Usage

Desc

<var 1>

<var 2>

<var 3>

<var n>

Pass

Render flags

Architecture: Pass setup

REAC 2025

Render target formats

Shaders

Vertex

Pixel

Domain

Hull

Geometry

Compute

Setup

Defines

Vertex format

Render state

RT format

State flags

Usage

Desc

<var 1>

<var 2>

<var 3>

<var n>

Pass

Render flags

Architecture: Pass setup

REAC 2025

Render flags

Allow pass additional info into c++ code
− Queue type
− Sorting order
− etc

Shaders

Vertex

Pixel

Domain

Hull

Geometry

Compute

Setup

Defines

Vertex format

Render state

RT format

State flags

Usage

Desc

<var 1>

<var 2>

<var 3>

<var n>

Pass

Render flags

Architecture: Pass setup

REAC 2025

State flags and usage
State flags describe what shaders are needed
Usage describes misc info about a pass such as:

− Is pass material or not
− Should precache psos
− How to generate cpp code

Runtime evaluation using code generation

Shaders

Vertex

Pixel

Domain

Hull

Geometry

Compute

Setup

Defines

Vertex format

Render state

RT format

State flags

Usage

Desc

<var 1>

<var 2>

<var 3>

<var n>

Pass

Render flags

Architecture: Tools

REAC 2025

Shader
Studio

Shader
generator

Codegen

Engine

ShaderStudio - authoring, editing

shader_generator - proxy tool
− Execute tools to generate c++ code
− Copy files to right destination
− Send signal to engine for shader

invalidation

Codegen - c++ code generation for passes
as well as shader reflection

Build process: Shader cache

REAC 2025

Types of cache:
− Local cache (for dev purposes only)
− Prebuilt cache

For every pass generate .sdc file - compressed blob collection with:
− Shader binaries
− Pipeline state collection for material passes (200 bytes per pipeline)
− Meta information for validation

Build process: Shader cache

REAC 2025

PC, D3D12

Material:
− Total size (compressed): ~314 mb
− Unique binaries: ~11000
− Avg shader binary size (uncompressed): ~42 kb
− Pipelines: ~27000

Engine:
− Total size (compressed): ~406 mb
− Unique binaries: 38000
− Avg shader binary size (uncompressed): ~17 kb

Build process: How does it work

REAC 2025

Material passesEngine passes

Scene
processing

Generate
Combinations

Generate
Combinations

Scene
processing

Generate
Combinations

Scene
processing

Generate
Combinations

Shader cache
console

Batch 1 Batch 2 Batch N

Compiler Compiler Compiler

Export

1. Collect information from the
scene

2. Generate shader and pipeline
combinations

3. Separate compilation into
batches

4. Compiles batches
incrementally (only changed
passes)

5. Export data in per pass basis

Build process: Timings

REAC 2025

Generate Combinations for Engine
passes: ~1.5h

Scene processing - ~25 min
Generate Combinations for
Material passes - ~25 min

Shader compilation ~2h
Compiling for 1 platform ~10min
Importing and processing ~20min

Rest is exporting which is heavy
due to PDBs

Total time is ~5h for all platforms

Material passesEngine passes

Scene
processing

Generate
Combinations

Generate
Combinations

Scene
processing

Generate
Combinations

Scene
processing

Generate
Combinations

Shader cache
console

Batch 1 Batch 2 Batch N

Compiler Compiler Compiler

Export

Build process: Problems

REAC 2025

31 scene

Each scene has ~3-4k unique
materials

In pass setups have ~2k
conditions for 80 passes

All permutations for engine
passes, easy to lose control

Bad separation into include files
can cause a lot of recompilation

You have to be very mindful of the
process

Material passesEngine passes

Scene
processing

Generate
Combinations

Generate
Combinations

Scene
processing

Generate
Combinations

Scene
processing

Generate
Combinations

Shader cache
console

Batch 1 Batch 2 Batch N

Compiler Compiler Compiler

Export

Build process: Build time

REAC 2025

Collect scene info
− Keep number of scenes reasonable (remove test scenes)
− Process data at the same time if possible (multiple scenes at the same time)

Generate define sets and pipeline sets
− Keep desc parameters and conditions in setups low
− Better to split a pass into two sometimes

Compile shaders, compress, export
− Parallel compilation as much as possible
− Keep incremental compilation in mind, separate code into different files wisely

Build process: Memory

REAC 2025

Collect scene info
− Collect just what you need for scene (at least in builds)

we have “fake scene” named common for that

Generate define sets and pipeline sets
− Keep shader binaries permutation reasonable,

sometimes dynamic branching is ok

Compile shaders, compress, export
− Don’t forget to compress :)

Precaching: Why and what can we achieve

REAC 2025

Only a PC issue
Creating pipeline state is CPU heavy operation
Can easily take ~50-100 ms

Create all pipeline states during loading

No pipeline creating during gameplay

Drivers have cache, so next launch will be fast

Can (sometimes) unload shader binaries after
precache to save up memory

Precaching: Before Space Marine 2

REAC 2025

Have precache for material passes already
Had Forward+ so shader binaries for materials were large
But we moved to Deferred so our shader binaries for materials decreased
For materials precache took around 2-3 min which was satisfactory for us
We didn’t compute engine pipelines since it’s too much
(~200k pipeline permutations for 2k actual used pipelines)

For engine passes in WWZ implemented manual cache
− Complicated build process
− Very unstable

Code was stripped, issue unmonitored
Few months before release we profiled
Quite a lot of stutters!

Precaching: Stutters

REAC 2025

X - frame number Y - time in ms

Precaching: Ways to do it

REAC 2025

Manual Cache Enumerate all possible combinations

1. Quite easy to implement

1. Slows down the iterations a lot
2. Tricky to design right
3. Not guaranteed to collect all pipeline

states
4. Changing the art or shaders can

easy render cache obsolete

1. Just works out of the box

1. Hard to implement if issue was
neglected for some time

2. Storing more than you need, memory
overhead

3. Build process takes more time
4. Easy to get out of hand

Pros

Cons

Precaching: What we chose

REAC 2025

Manual cache!

What we did differently:
− Profiled and narrowed down pass list
− Store pipeline cache in text form

− Invalidate only pipelines that couldn’t be read
− Easy to hand fix if needed

− Art was ready at that time, cache wasn’t outdated for a long time
− Cache was collected only for a shipping builds, but still could and was used in dev

builds to help here and there

Overall ugly solution to the problem but it gets the job done

Precaching: Conclusion

REAC 2025

Don’t forget about the issue, try to keep it in mind!

Try to regularly profile the issue and keeping stats every so often

Sometimes ugly solutions is the way to go

Shader infrastructure: Conclusion

REAC 2025

Managed to ship more demanding game with little changes to system

Enabled artists and developers to create with little limitations

Managed to stay within certain performance limits

Learned a few lessons about managing precache performance

++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++

enginearchitecture.org

Thanks!

REAC 2025

Thanks to everyone who participated in rendering engine development in recent years

Rendering team
Engine programming team

Tools team
Infrastructure team

Technical art department

Special thanks to conference organisers and to our Graphics R&D Technical Director
Denis Sladkov for this presentation supervision

