
Hello and welcome. I am Sander van der Steen, one of the lead engineers on the 

Manuka renderer since 2022 and virtually with me is Robert Cannell, the lead 

engineer of the Gazebo renderer.  Today we will explore our rendering architectures 

of the 2 in-house renders used at Weta Digital.



● That is right, this is 2 talks wrapped into one. First up is Manuka which is our 

offline, final frame rendering and the second renderer discussed is Gazebo, 

which is used on stage and also on artist workstations in order to provide 

interactive feedback

● For Manuka, I will briefly discuss the history before focusing on details of 

Manuka’s architecture that stand out and might not be quite what you expect. 

In order to do so we will also leave other parts of the renderer uncovered. 

After discussing Manuka, I will hand over to Rob to discuss Gazebo in more 

detail and

● At end of this talk there should be time for a small Q&A where we can try and 

answer any further questions you have.



Manuka dates back about 10 years or so, and to understand the history of Manuka 

we first need to quickly touch on Pixar’s renderman, which 10 years ago was sporting 

the top logo. Pixar’s renderman, or PRMan in short was and still is one of the most 

widely used offline renderers for film production today. PRman is what is called a 

“Renderman compliant renderer”  which means it adheres to the Renderman interface 

specification from 1988. There is a lot that we can say about this, but what is 

important here, is that it basically means that the renderer ingests data using a “open” 

API or scene description files called RIB.



● Weta 10 years ago was also using Prman as a renderer. This means that our 

pipeline was geared towards delivering these RIB files.

● However, we were having scalability issues with PRMan. At the time, our RIB 

based pipeline required many bakes as “intermediate products”, and these all 

needed to have their dependencies tracked. There was a desire to have a 

renderer that “would just render the scene at once, no matter what”. There 

was also the desire for researches to implement the latest technologies 

directly, without bounds. Weta has always had a strong academic connection.



In other words, we wanted to render reality with a minimum of trickery which meant 

modeling natural appearance. 



A key example of Manuka being a research renderer is the fact that Manuka is a 

spectral renderer. It is the first spectral renderer that was used in commercial VFX. 

Spectral rendering implies that we treat colour as spectral power distributions, as 

opposed to the normal three channel representation. This gives us improved colour 

accuracy.

As interesting as spectral rendering is, it is not the topic of this talk. And so if you 

want to know more about spectral rendering. I suggest you start with the excellent 

spectral rendering course done at Siggraph 2022 last year.



● Since making that decision on making our own renderer, Manuka has been 

successfully used in many VFX productions. I picked a few, but there are 

many many more, and there is plenty more in the pipeline!



● So we are here to talk about rendering in movie production. To understand 

this a bit better, let’s do a crash course into Weta’s content creation pipeline. 

We start with the DCC’s on the left, Maya & Houdini are the main ones but we 

have a wide range of other products in use at Weta. 

● Those DCC’s all produce assets (or data), which can be in the form of our 

proprietary scene description Atlas (which predates USD and is a topic in 

itself), or the increasingly common Universal Scene description.

● The final category of content are what we call “procedurals”. They do data 

amplification at render time, generating renderable content typically as the 

content is ingested by the renderer. Think hair, trees, woven cloth etc.

● This data then gets to the renderer, Manuka. But this picture is not complete:

○  There is Gazebo which is used for interactive feedback and the 

Material authoring pipeline, both hooking into this web.



● In reality, a pipeline might as well look a bit more like this. Feedback notes 

from the director or studio can change anything anywhere back up the chain, 

causing version churn at any point in time. There is also work that can have an 

almost cyclic dependency. Think of animation on top of a boat in the ocean, 

hair interacting with water etc. The VFX pipeline, at least at Weta, is less 

linear compared to a games pipeline.



● Luckily we are not here to talk about complex pipelines, we are here to talk 

about rendering.  But the diagram does highlight the 2 distinct areas that we 

will the focus for the rest of this presentation. There is final frame rendering in 

Manuka on the right and there is Gazebo at the bottom, combined with our 

procedurals, which is what drives artist experience at weta.



● The pipeline ultimately makes API calls into libmanuka.so, which is the 

Manuka renderer, loaded as a dynamic library.

● The API layers started life as being100% RISpec compliant, and for large 

parts we still are though there are places where we deviate or extend the 

system. One example is our implementation RSL, the renderman shading 

language. Manuka is spectral pathtracer, and there are differences as a result. 

Other changes exist in the interactive rendering space to perform live edits

● However, for Manuka we are primarily interested in non-interactive rendering 

in this section of the talk.



● Later on, things will get more interactive, where Gazebo is discussed. Gazebo 

provides that interactive preview that artists need to do their work. This is 

especially true for procedural geometry, which is based on custom data that is 

not trivially translated to polygonal geometry in the DCC’s. The procedurals 

can generate data for the renderer directly, providing an accurate 

representation of the final frame in Gazebo. Robert will discuss how this works 

in more detail in the second part of this presentation



● To visually illustrate Gazebo and Manuka, this example shows a shot first 

rendered from inside the DCC in Gazebo as an artist might see it, and then 

rendered in Manuka as final frames.



● So the compare the renderers in a table. You can see the different uses here:

○ Gazebo is used everywhere, stage anim, layout fx etc. The frame time 

is typically < 0.1s or 10fps, though depending on the use, frame times 

can vary.

○ Manuka Interactive is a “interactive” version of Manuka, which I will 

only briefly cover at the end of the talk. It’s use is limited to lookdev 

and lighting and the frametime is roughly in seconds 

○ And finally, there is Manuka Batch, or Manuka offline.  Frame times are 

measured in minutes or even hours and it produces the highest quality 

images that are used as final frames.



And with that, we can conclude our 10.000ft view of how our pipeline works at Weta 

Digital.  Now let’s get a little closer to the action and zoom into rendering a bit more.



● To setup some boundaries for this talk, we will assume that all that pipeline 

stuff is covered and that, somehow (and we don’t really care how) we have in 

memory available camera, settings, geometry, lights textures. What we are 

going to focus on next is unique parts on how Manuka performs rendering.



● One key architectural change in Manuka is the way shading is executed. Now 

while most if not everyone in the audience will know what shading and 

shaders are, the definition of a shader is somewhat lose and Manuka takes it’s 

own spin on it due to the way shading execution is done.

● Most renderers execute in what is known as a shade on hit system. Rays are 

generated, you run intersection on the geometry, you perform shading 

calculation, taking into account surface normal, lights, textures etc. You 

evaluate the bidirectional distribution function to produce color and splat that 

to your image. You may decide to generate more rays to a certain sampling 

threshold is reached. The more rays, the smoother your image, but the longer 

it takes.



● Manuka does this differently; in that we don’t start the generation of rays until 

we have done ALL the shader executions. 

○ This may sound counterintuitive at first, but doing things this way gives 

us a few advantages which we will cover in more depth later in this 

talk, but a small spoiler, this is done for performance reasons.

○ Consequentlty shader execution in Manuka is not quite traditional as 

we don’t have access to the light information, making BxDF evaluation 

impossible. 

● So what we do instead is evaluate to a what we call a material, dealing with 

direction independent computations including texture sampling.

● Beyond shader execution, which reauires more context and information that 

we will provide later, we also need to determine at what frequency or density 

we want to evaluate those shaders.

● This is decided as part of the tessellation phase and let’s cover this next.



● The purpose of tessellation is to produce micropolygons. Typically for a 

production render, micropolygons are sub-pixel in screen-space, though 

adjusting the size of your micropolygons is obviously a common 

performance/quality trade-off. The micropolygons are fed into Manuka’s 

shading phase, and so the density of those micropolygons controls the density 

at which shaders are executed and as a result textures are sampled etc.

● The output of Manuka’s shading is stored on the micro polygons vertices, and 

again, these are then the full set of input parameters to evaluate the BxDf 

when later on we start shooting rays.



● So how far do we dice or tessellate? There is no easy answer to that and it 

depends on many settings. What is true is that, in most cases, we need a 

dicing camera (which could be the eye camera) before we can start 

tessellation. World distance and orientation is a key driver for how fine our 

sampling will be. Another key setting is the shading rate which is simply a 

artistic control to the renderer.

● Another option is to run Manuka in a special mode, producing oracle data. 

These files can be fed into a subsequent renderer with information on how 

much tessellation you are going to need.

● Exemplars, or instance “sources’ are obviously special case in this mode and 

come with a few limitations.  At a high level, we are simply going to uniformly 

dice the exemplar at the density needed for the instance that needs the 

highest density, typically the one most in view of the dicing camera.



● Manuka has been designed to deal with very large amounts of instances. 

Multiple billions, and they can be nested, which means instances can have 

other instances which can have other instances and so on and so forth. This 

can reach quite a few levels.

● Also, procedurals can produce instances upon execution, but also, 

procedurals can be instanced themselves.

● Taking a quick look at this video, you can see an extreme amount of 

procedurally generated instances that are handled by Manuka.



● Instancing typically uses uniform dicing, with the dicing oracle providing the 

dicing rate required for the instance closest to the camera. However, there are 

scenarios where this breaks down.

● For example, if you have a single instance of a large object very close to the 

camera, dicing the exemplar for that instance uniformly might be too costly as 

it will produce a large amount of data. The instancing system needs to deal 

with this and it can using “large instance optimisation”. 



● Another important task of the instancing system is to make sure there is 

consistency between frames to avoid popping LOD’s.

○ The instancing system together with the oracle can generate shading 

LOD’s which results in more stable dicing rages for objects, resulting in 

temporal stability. This is demonstrated with this flyby in a forest of 1M 

trees.

● But, instance counts are all cool, in reality in nature, things are seldom 100% 

identical. Artists will want to slightly alter the appearance of each instance by 

varying a texture or shading parameter. This is straightforward to implement in 

a shade-on-hit architecture where the full shader is executed each time, but 

for our shade before hit system this presents a problem.



● To allow shading variation. Manuka has a few tricks up it’s sleeve.

● First of all, you can provide multiple shading variations for an exemplar, all 

using the same geometry/topology. This works well when you want say 

multiple variations of leaf colors. Using those variants, Manuka can interpolate 

between them at render time. This however breaks down when there is a 

shading parameter that is driven by a world position, such as a snow or flood 

line.

● Should artist need this level of control on the instances, Manuka can also de-

instance the data on ingestion.

○ This gives artists the artistic freedom of using instances in their content 

authoring pipeline and have it supported by the renderer without a 

flattening or baking step for the artist

○ Obviously, this does come at a cost, and in current internal 

developments we are looking at exploring a more elegant solution to 

this.



● (6 min)

● Regardless of how and why we tessellated, the next step is shading and no 

rendering talk would be complete without diving deeper into shading

● We already hinted that shaders deal with direction independent computation. 

Let’s explore this a little bit more in the following few slides.



● So shading in Manuka is dealing with shape specific computation that 

determines a shape’s appearance.

● The output of shading a surface for volume is what we call a material.

● And so to understand what shading does in Manuka, we need to understand 

the concept of materials, so let’s look at this first.



● A material determines how light interacts with a surface or a volume. 

● There are 3 main types of interaction, modelled with bidirectional distribution 

functions, commonly referred to as BxDF’s. The main modes of interaction are 

reflection, transmission and emission.



● Manuka does not define a single “uber shader”, but rather ships with a set off 

187 BxDFs that shader writers can combine and layer to create certain effects. 

These BxDF’s themselves are hardcoded.

● But with the set of BxDF’s available, we have been able to satisfy the needs of 

Weta’s production. The BxDF’s can be grouped and we have solutions 

available for metal, thin glass, hair supporting eccentricity and double cylinder 

models, glints, yarn and woven cloth, subsurface etc.



● In Manuka, we call BxDF’s lobes, and the way they are combined defined the 

look of the object. While the BxDFs you can choose from is large but limited, 

the way you can combine them is user controllable. There are various ways to 

blend lobes together to produce a wide range of effects as can be seen on this 

image from the Manuka internal documentation

● A common practical layered material is car paint, but in reality there are many 

surfaces that combine many “layers” and we need the ability to model them to 

reach the fidelity we want in our final images.

● These layers are defined per shape and the more layers used, the more data 

we store on the micropolygon vertex in order to compute it during the path 

tracing phase.

● The ways in which we combine these is using the above blending modes and 

somewhat straightforward. Most modes are described in the paper linked.



● Now that we know what a material is, we can switch back to what shading in 

Manuka does.. It creates the properties for a material!

● Breaking that down, we

○ setup a set of lobes or BxDFs and how they layer together. 

○ We evaluate the direction independent parameters for each lobe, 

together with lobe and layer weight. Note that texture sampling is done 

here, so these parameters are frequently controlled by 1 or more 

textures.

● The output of the shading is stored on the micropolygon vertices, and again, 

more layers is more data. 



● And with the shaded output we can now, during LightTransport or path tracing, 

evaluate what we call the layering program. This is what produces the final 

color or spectrum, taking view and light directions into account. The inputs to 

the layering program are interpolated from the neighboring vertices which 

have computed output data.

● The layering program can also be sampled in order to produce a direction for 

generating new ray bounces.

● Spectral uplifting is also part of this phase of the renderer. 

● Spectral uplifting is a (very) under-constrained problem and there are many 

solutions with their own trade-offs, out of scope here.



● With the overview model of how we produce pictures now covered, let’s circle 

back and look a little bit closer into our shaders.

● Shaders are written or code generated in the Renderman Shading language, 

or RSL in short. This dates back to the renderman specification I mentioned at 

the start.

○ The inputs to the shaders are things like attributes, primvars and 

shader parameters. These are what artists use to tweak 

○ Shaders proceed to execute their logic, reading textures and executing 

user defined logic.

○ Shaders can also, indirectly, execute co-shaders, which are basically 

other shaders, which can again read more textures and execute further 

coshaders.

○ Ultimately, we output the material structure, parameters and optionally 

AOV’s for the next stage in the pipeline. It is this material structure that 

defines the eventual look of the object.

● Now, different sections of a shader can run at different frequencies. Let’s have 

a closer look.



● A shader has certain  “pipeline stages” and these stages run at different points 

in the shading execution and also at different frequencies.

● A table of different shading stages can be seen above. While diving into all the 

stages Is out of scope, let’s do a simple walkthrough of some key stages to 

understand how this works.



● The mnk_init call is the main entry point for shading. It is executed once per 

primitive and It is responsible for setting up the material structure.

● As you can see here, we are setting up a material that has 2 Lambertian lobes 

using lambertion reflection and transmission. While it is possible to have more 

layers, most production shaders have between 1 and 10 layers, the average 

varying per production.



● In the pre-lighting stage we compute the material parameters, per vertex.

● Notice that the input is the MaterialBoundary that we defined in the init stage. 

Here we set the material to be 25% reflection in red, and 75% transmission in 

green.



● Displacement is another shading stage, which is somewhat decoupled from 

the other stages. Displacement is computed per micropolygon vertex and the 

purpose of a displacement shader is to alter the position and normal of a 

vertex, usually driven by a displacement function that samples a texture. This 

is “mydisplacement” here.



● As we have already seen, shader code is RSL. Now we don’t actually publish 

the RSL together with the asset, there is a transformation step where we 

generate a MSLO file. You can compare this loosely with a C source file that 

has been expanded by the pre-processor. As such, it is able to compile with 

little dependencies. The MSLO is a compressed format.

● The MSLO files are what is read by Hyperion, which is our shader compiler. 

Hyperion’s job is to transform the MSLO into a MSHD, which is actually 

executable at runtime. Like any compilation,  this compilation can be slow and 

because the MSHD is effectively a shared library, we need to make sure the 

ABI is stable. To avoid many machines compiling the same shader, we store 

compiled shaders in a network cache, which is flavoured by the Manuka 

version used.



● Over the years, Weta has accumulated a large set of shaders. While shaders 

can be hand-written as RSL, they can also be code-generated from a graph. 

We have proprietary tools for shader authoring which will be topic for another 

day, but what I wanted to illustrate here is that shader graphs are very large. 

Having 10.000 nodes in a shader graph is nothing exceptional. These large 

graphs, and thereby large amounts of code do put pressure on the shader 

compilation in Hyperion.

.



● So a final word then on Hyperion, which is our shader compiler distributed 

internally with Manuka. It is backed by LLVM version 11 and it scales to very 

large shaders. 100K+ lines of RSL are not uncommon. And while OSL is not 

directly supported by Manuka, our common shader size is a concern for 

moving to other languages. For various reasons we are looking to move to a 

newer shader back-end but it is too early to go into depth here. We hope to be 

able to discuss new shading tech in an upcoming talk.



(5 mins)

Now all of this will likely still have you wondering. Why do we do shade before hit? 

Hopefully you understand how we do shade before hit, but I have been pretty vague 

on why we do shade on hit. I mentioned that we do this for performance reasons but 

have not explained how this works. What I have explained is the difficulty with 

instancing.  Still, lets look into the wins more in this section.



● As mentioned in the previous section, we have very large shaders and that 

makes executing those shaders expensive. We can get performance if we can 

reduce the amount of times we execute the shaders.

● By storing shader execution on the micropolygon vertex in a directional 

independent manner we create the ability to reduce the amount of shader 

execution in 3 ways:

○ Sampling the same polygon multiple times only executes the layer 

program multiple times. The shader data is simply interpolated from 

the neighboring vertices.

○ Because the data is direction-less, the data is re-useable over “similar” 

renders. Think about an artist placing a light in the scene. To move a 

light, no re-shading is needed if all the data is correctly cached.

○ Even consecutive frames that are “not too different” can re-use shaded 

data. Think static objects at medium/far distance from the camera.

● Beyond these advantages, we reduce the load on the path tracing phase. No 

texture sampling is done during path tracing, avoiding the need to sample 

textures and reducing the memory load on this phase of rendering as we don’t 

need to open up all these large files.

● And finally there is CPU caching advantage. Because shading is executed per 

object, or rather per grid, it is highly likely that all vertices in the grid will 

access the same textures. This helps limit the IO overhead of our texture 

fetches as the textures will likely live on a network share somewhere. 

Remember that render compute nodes in a renderwall will have little to no 



local storage.

And finally, shading can be easily distributed and the result of the pre-shading can 

be used for resuming renders, avoiding paying the cost for the data ingestion and 

tessellation a second time when the circumstances allow it.



● To clarify this further, lets do a thought experiment, let’s say we can evaluate 

our shaders in a range of 3 to 30 thousand times per second per thread, 

yielding a throughput in the order of half a million to 5 million vertices per 

second on a 64 core machine. These numbers have nothing to do with the 

image here and are largely illustrative to explain the concepts.

● A scene might have 20M pre-shaded vertices, which would take roughly 20s 

to compute in this model. A shade-on-hit renderer would obviously not pay for 

this cost at this stage.

● That scene might produce 200M “material instance”, which are basically 

points at which the layer program is executed and we have evaluated the 

BxDF lobes. This is done over 64 progressions, yielding that we would need 

roughly 3.1M hits per progression in a shade on hit model.

● Now it should be clear that evaluating the layer program is substantially 

cheaper compared to evaluating the full shader. The more times you need to 

evaluate your shader, the more it makes sense to have these evaluations pre-

computed on the vertex.



● Now these numbers vary wildly and the parameters of your render can change 

to make things slide into favour for one or the other architecture. Typically you 

could say that the more progressions you do, the more shade before hit 

becomes appealing.  This is an important reason why we state that Manuka is 

a :time to last pixel: optimized renderer.

● However, if your input geometry is very or even too dense, you would end up 

pre-shading too much data, swinging the pendulum the other way

● The argument of coherent texture access, while present, is very hard to 

quantify. There are a lot of variables at play for texture access on the network 

layer. There is the CPU hardware and it’s caching tiers, the storage back-end 

and shaders and textures used, combined with things like network traffic and 

actual filer usage. Testing this fairly is next to impossible as there are always 

renders going on.



● To continue on the topic of textures, this is a table from the 2018 paper I 

referenced earlier. The numbers no longer reflect current production data, but 

the point it illustrates around reduced texture access is still valid today.

● So the 3 columns are data from 3 different productions and the top row shows 

the amount of texture data on disk was used for a typical frame. The second 

column then shows how much actual data is being read. This reflects the 

mipmap level and coverage for instance.

● The 3rd row is the number of texture file we have. For modern productions this 

is way more these days. The number of mipmapped EXR textures we read per 

frame can be 50-70K these days.

● Next up is the number of layers that we feed to our layer program. You see 

here that while we support a very large number of layers, the actual number of 

layers, on average is not to too great. While the amount of data we store per 

vertex can be between 4-200 bytes, in reality it is often much more towards 

the lower end. The data is also very compressible.

● In short the takeaway from this table is that pre-shading allows us to store less 

data during ray traversal, which in reality means we can render bigger scenes.



Now it should be clear that shade before hit still is a trade-off. The most obvious 

trade-off is our longer time to first pixel. This can make Manuka appear “slow” as a 

shade on hit renderer might already show some (noisy) pixels, Manuka will still be 

pre-shading. The time to first pixel as it is called is not first in class.

The other drawback is the interaction with instancing. We have mentioned this 

before and while we can de-instance on scene ingestion, this does consume more 

memory. This won’t impede artist workflow where the memory is not a concern, but 

in reality a lot of shots will have memory constraints, and so simply de-instancing 

everything on ingestion is not always feasible.



(4 mins)

And with this, we have covered the majority of Manuka;s architecture, but we have 

also glanced over some very important features and aspects. Let’s use this last 

section of the presentation to cover a few use-cases in Manuka that might be 

unorthodox.



Now you may think that this architecture is not particularly well suited for live or 

interactive rendering and you’d be right. 

However, Manuka does have a live rendering mode, which prioritizes time to first 

pixel instead of final images. This mode does a few things:

● It switches the shading back-end to be on-demand. This can be best viewed 

as an intermediate between shade on hit and shade before hit. Rather than 

shading all geometry up front, we shade the grid of the object only when we 

first hit it and then store it in a cache. This means our time to first pixel is 

reduced. We tessellate and shade a shape only when it is hit by a ray.  This 

does produce a problem in that we can only trace rays when the geometry is 

in the BVH, which means we can’t do displacement in this mode.

● Live rendering mode in Manuka also supports re-shading, which allows you to 

cache the tessellation step so that you don’t have to execute it again when 

you change something “simple” in a shdaer like a colour.

● And finally, this is a fully editable mode of Manuka, where changes can be 

made to geometry/lights/instances “on the fly”. In order to support editing 

better, the BVH used in this mode is layered, meaning that we don’t have to 

rebuild the full BVH for localized edits.

● The interactive rendering section is a section of Manuka where we can see 

Manuka deviating from the Renderman API norm. The Renderman API was 

simply not designed for this flexibility and the APIs we use for editing can be 

considered more modern. Perhaps in the future our offline rendering will also 



move to a more modern API.



● Now even though we only briefly cover lighttransport and it is conceptually 

relatively straightforward, it is actually a fairly large section of the Manuka 

code base.

● Doing Light transport in a performant way is a very active area of research. In 

a scene like this, where there are many highlights, reflections and refractions, 

brute force will simply fail to produce a sharp image in a reasonable 

timeframe. 

● In the LightTransport section of Manuka, it more closely resembles a 

“research renderer” as opposed to a “production renderer”. Many techniques 

are explored and controllable for the knowledgeable artist to work well in very 

specific scenarios.  This suits us well, different shows will require different 

techniques as they have different problems. Avatar 2 had a lot of water and 

caustics for instance, whereas another show such as Alita Battle Angel can 

really push what we do for rendering eyes.



● The caching of shaded data has been mentioned before, but the usage of it is 

still expanding and so it is worth mentioning it separately here. 

● What we see here is a more detailed pipeline of Manuka and what we have 

discussed. The shading cache , we internally call this a Micropolygon store, 

and this data can be used to feed directly into LightTrasport. It should be clear 

that if we have “hot” MPStore caches, our time to lighttransport, and thereby 

our time to first pixel, can be greatly improved as we can bypass a large 

section of work.

● We can also use the mpstore data to generate good approximations for earlier 

in our pipeline. The geometry includes the output of displacement and can be 

baked with an albedo color per vert, giving a simple object that can be used as 

a reference elsewhere.



● Now MPStores can for also be used implement multi-frame rendering with 

(nearly) static content. We basically store (slightly) more shaded vertices on 

the geometry to satisfy the camera/object movement for the frames covered.

● Similar to real-time rendering, multi-frame rendering allows us to re-use some 

of the data form the previous frame. In this case, we can spread the cost of 

procedural expansion, tessellation and shading for these objects.

● And so while a multi-frame render will take more time compared to a single 

frame, the extra time is compensated by the extra frames that you save. 



● And finally, to conclude, Manuka is still a very active area of development at 

Unity/Weta Digital. To highlight just a few areas of improvement we are 

looking into:

○ The experience of cloud rendering for Avatar 2 has given us an 

excellent view on where pain points are for us and what we can best 

do to avoid them.

○  Other areas of development is a more flexible shading back-end, so 

that we can combine the best of both worlds for shade before and 

shade on hit.  

○ Interactive rendering is another key area of improvement. This works 

together with integrating ever more tightly with USD workflows and 

USD enabled DCC’s.

○ And maybe, we will also render more blue people in the future too.
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