
Modern Mobile Rendering @

Sebastian Aaltonen (2023)

Modern Mobile Rendering @ HypeHype

● Research
○ Understand your target hardware (and audience)
○ Why can’t we have Nanite and Media Molecule: Dreams on a phone?

● Design
○ What is the correct platform abstraction level?
○ The iterative API design process
○ Do things at the right frequency and granularity

● Implementation
○ Fast & safe object lifetime tracking
○ Fast & clean C++20 API for constructing resources
○ Efficient GPU memory allocation
○ Bind groups, exposed to user land
○ A software command buffer, but an order of magnitude faster

Scope of today’s presentation

High level rendering code

Render pipeline Visual algorithms
Shader optimizations Scene data
Culling Multithreading
Device scalability Material composer
Decaling Virtual texturing
A content creation Pretty pixels!

Metal Vulkan WebGPU WebGL2 Windows Android iOS Mac

Platform API

Today’s scope = bottom levels. Pretty pixels next time!

Research

Understanding your target audience

● Gather analytics data
○ GPU manufacturer, model, driver version
○ Amount of RAM, OS version

● Compare analytics data to older data
○ Which devices are soon leaving the market?
○ Extrapolate one year in the future = project ETA
○ Keep tracking the data to adjust plans during production

● What is the correct “min spec” hardware?
○ Android: 95% of our users have Vulkan 1.0 + Android 9
○ 2GB memory (1.4GB usable)
○ Have to cut bottom 5% of users

■ New tech improves bottom 50% experience a lot
■ Better user retention for 95% of users

HypeHype top 20 Androids

Understanding your target hardware
Android
OS: Android 9
CPU: 32 bit + 64 bit
ARM: Mali-G series (Bifrost)
Qualcomm: Adreno 500 series
PowerVR: 8000 series (Rogue)
6 years old hardware

Apple
OS: iOS 13
CPU: 64 bit
iPhone 6s (A9) / iPad Air 2 (A8X)
7 years old hardware

● Form contacts with mobile hardware vendors
○ ARM (Mali), Qualcomm (Adreno), PowerVR, Apple
○ Present your early design. Get feedback. Ask questions

● Read the best practice guides and API docs
○ Questions → Ask your IHV contacts

● Trick: Read the new hardware marketing material
○ Big improvements → That’s still SLOW on 50%+ devices!

● Buy test devices
○ Min spec device of every GPU vendor

● Prototyping
○ Write a small test app to measure the most important gfx

API features on each vendor min spec device
○ Confirm that the driver works for our use cases

Why can’t we have Nanite or MM: Dreams on a phone?

● GPU-driven rendering: 8 years ago at SIGGRAPH 2015 [1]
● SDF ray-tracing (Claybook): 5 years ago at GDC 2018 [2]
● Nintendo Switch (handheld) versus bottom 50%+ mobile phones [3]

○ Peak flops (~200 GFLOP/s) and mem bandwidth (~20 GB/s) are in the same ballpark
○ Nvidia GPU architecture is designed for compute (CUDA, AZDO):

■ Fast generic memory load/store - Mobile: 16KB uniform buffers! SSBOs are slow!
■ Fast & big groupshared memory - Mobile: Small or emulated
■ Fast local/global atomics and wave intrinsics - Mobile: Wave intrinsic support <10%
■ Big register files and big generic caches - Mobile: Avoid complex shaders
■ 64 bit atomics - Mobile: No 64 bit integers at all!

○ Modern PC graphics: 3d tiling layout for volume textures. Big deal for SDF rendering
● 50%+ of mobile phones: Designed to run existing GLES 3.0 games efficiently

Design

What is the correct platform abstraction level?

Platform
independent

Platform
specific

Business logic

Data model

High level
rendering

Shaders

 Low level
rendering

GFX API calls

Game engines

Business logic

Data model

Shaders

High level
rendering

 Low level
rendering

GFX API calls

Flutter app
framework

Business logic
(cloud server)

Application

Shaders

High level
rendering

Low level
rendering

GFX API calls

Mobile apps

Business logic

Data model

High level
rendering

Shaders

Low & mid
level rendering

GFX API calls

OLD ← HypeHype → NEW

Business logic

Data model

High level
rendering

Shaders

Low level
rendering

GFX API calls

Issues: new features, API bloat, fast paths, maintenance, dependencies, parity issues, sim ship?

Our solution: Minimal platform abstraction

● Thin low level gfx API wrapper
○ Cross reference Vulkan, Metal and WebGPU docs
○ Find the common set of features and differences
○ Design performance optimal way to abstract the differences
○ Metal 2.0: Placement heaps, argument buffers, fences

● Trim deprecated stuff
○ Transform feedback
○ Strips, fans
○ Geometry shaders, HW tessellation
○ Vertex buffers?

■ Some mobile devices still benefit
● Single set of shaders

○ GLSL and use SPIRV-Cross to cross compile [4]

Low level API design goals

● Avoid higher level concepts creeping into low level API
○ No mesh or material: Can be represented as VBs + IB and bind groups.
○ No automatic data setup or forced data layout
○ No fixed draw algorithm: Traditional, instancing, etc. Future = GPU-driven?
○ No data loading from disk

● “Zero” extra API overhead
○ Design core pillar: As easy to use as DX11, but as fast as hand optimized DX12
○ Wrong solution: Implement DX11 driver in your code base
○ Potential performance pitfalls:

■ Fine grained inputs, render state and data copies
■ Resource state tracking, shadow state
■ PSO + render state and bind group caching (hash tables)
■ Software command buffers

What is the correct process for API design?

Traditional

● Big technical design document
● Scheduled & split into tasks
● Design first, then code

Issues
● Plans locked too early
● Programmer notices architectural

issues too late
● Refactor impacts production

Agile + Test Driven

● What we need in the next sprints?
● Implement small pieces of tested

production ready modular code

Issues
● Can’t see the forest from the trees
● Good pieces != good architecture
● Hard to throw away production

ready code with 100% tests

Traditional Agile? ??

Our solution: Iterative API design process

● Write mock user land code
○ Create resources: textures, shaders, buffers, passes, etc
○ Setup resources with valid data
○ Render a full frame using the resources (+animate)

● Write mock gfx platform API
○ Don’t write any backend implementation code yet
○ Compile it with the mock user land code to syntax check
○ Program doesn’t yet link or run. It’s 100% fine!

● Iterate until happy
○ Add mock use cases whenever needed to improve the coverage
○ Do big architecture refactorings immediately when issues surface
○ Do we cleanly implement all gfx APIs? Abstract differences optimally?
○ Is the performance good? No allocs, copies, map lookups, etc…

● Finally: Implement the platform backends
○ Refactor ASAP if issues are found!
○ Vulkan/Metal API validation layers == big pre-existing test suites

Write mock
user land code

Write mock
graphics API

Validate
performance

Implement
backends

R
ef

ac
to

r!

Iterate…

● Temporal coherency
○ We are rendering the same game world 60 times per second
○ The camera moves smoothly (most of the time)
○ ~90% of the data is unchanged from the previous frame

● Operation frequencies
○ Once: Load a game world (+ all baked data)
○ Low: Load a mesh, texture, material or shader
○ Low: Change material texture bindings
○ Low: Change objects mesh, material, shader variant or render state
○ Medium: Change camera and sun properties
○ Medium: Modify object/material color (<10% objects)
○ Medium: Modify objects transform (<20% objects)
○ Medium: Change object visibility or LOD level
○ High: Render the object

Do things at the right frequency and granularity

Do all of these inside the draw loop?

Our solution: Separate lower frequency ops from drawing

● PSOs
○ Build all pipelines (all render state combinations) at application startup
○ Store the PSO handle to each objects visual component

● Bind groups
○ Create a bind group per material at level load: Contains all texture and buffer bindings
○ Store the material bind group handle to each objects visual component
○ Changing the material = a single Vulkan/Metal command

● Data upload
○ Persistent data: Upload once at startup. Delta update when data changes. [5]
○ Dynamic Data:

■ Batch upload whole pass: No per-draw map & unmap
■ Separate by frequency: Per pass | per draw

● Resource synchronization
○ Render pass: RT texture transitioned to write and then read
○ No state tracking per draw call

Implementation

Fast & safe object lifetime tracking

● Modern practices: Smart pointers, ref counting and RAII?
○ Too slow: Memory allocation per object, scatters data around the memory causing cache

misses, copy pointer = 2x atomics
○ Safety issues: Ref count runs out while iterating an array causing a destructor RAII side effect,

maybe in another thread. Using a mutex kills performance
● Our solution: Arrays!

○ One big allocation for all objects of the same type
○ Array index is a nice data handle

■ POD. Trivial to copy and pass around
○ Safe to pass to worker threads

■ Can’t dereference an array index. Needs access to the array
○ PROBLEM: Old handles referring an array slot that has been reused?

data data data data data data …

0 1 2 3 4 5

index
4

Pools and handles

● Pool
○ Typed array of objects

■ Every array slot has a generation counter
■ Counter is increased when the slot is freed

○ Freelist for slot reuse
■ An array (stack) of unused pool indices
■ Delete object = push index
■ Create object = pop index. Resize if needed (no ptrs → safe)

● Handle
○ POD struct: Array index + generation counter (32/64 bits)
○ pool.get<T>(handle): Compare generations. Not match? → return null
○ Typed Handle<T>. Pool has the same handle type. T is forward declared

● Weak reference semantics
○ Null check (predictable branch) is almost free on modern CPUs
○ Much better than callbacks in multithreaded systems. No races / mutexes!

index
4

gen
2 match!

data

1

data

1

data

1

data

5

data

2

data

1

…

…

0 1 2 3 4 5

Hot vs cold data

● Easy to use API needs auxiliary data
○ Texture can’t be just a VkTexture or MTL::Texture
○ Additional data: size, format, data ptr, allocator…
○ Needed for low frequency tasks:

■ Update, readback, sync, create dependent resources, free memory
● Rendering needs only the hot data

○ Auxiliary data bloats the struct → hurts caches in perf critical draw loop
○ Hate compromising performance and usability :(

● Our solution: Split hot at cold data inside the pool
○ Pool has two types and two arrays: Hot and cold
○ Both can be accessed with the same handle (using the same array index)
○ Split hot and cold data (investigate). Compromise avoided!

cold

1

cold

1

cold

1

cold

5

cold

2

cold

1

…

…

hot hot hot hot hot hot …

0 1 2 3 4 5

accessed frequently →

index
4

gen
2 match!

SoA layout
[6]

Fast & clean C++20 API for constructing resources

● Vulkan and DirectX use big structs to initialize complex resources
○ Structs contain other structs and non-owning pointer references to arrays of structs
○ Code bloat. No default values. Lifetime of temporary objects causes bugs

● Existing solutions
○ Builder pattern: Debug perf is horrible. Release codegen not optimal either

● Our solution: C++20 designated struct initializers
○ The best C99 feature finally in C++. Waited 11 years!
○ Default values:

■ Provided by C++11 struct aggregate initialization
■ Extremely clean syntax. Best readability

○ Array data?
■ Custom span that supports initializer lists
■ Safety: “const &&” parameter forces temporaries

Resource construction examples

Efficient GPU memory allocation

● Temp: high frequency
○ Must be extremely fast (million calls per frame)
○ Bump allocate 128MB memory blocks (stored in a ring)

■ Backend heap object contains 1 full sized GPU buffer: Buffer = offset + heap index
○ Backend provides a concrete bump allocator object

■ Allocation function bumps a pointer. Inlines to caller
■ Checks offset >= 128MB → calls backend to provide the next block
■ WebGL2: 32MB CPU memory blocks, glBufferSubData call per render pass

● Persistent: only when needed!
○ Two-level segregated fit algorithm

■ O(1) hard real time alloc/free. Uses two level bitfield + 2x lzcnt to find the bin
■ Delete: Merge neighbor blocks on both sides, if they are free

○ Same allocator on Metal (placement heaps) and Vulkan!
○ I open sourced the allocator in Github (MIT license) [7]

Bind groups, exposed to user land

● Traditional way: Separate bindings
○ Backend creates new bind groups on demand
○ Problem: Creating new groups is expensive
○ Workaround: Store bind groups in hashmap → SLOW!

● Our solution: User land bind groups
○ User constructs an immutable persistent bind group from a set of bindings

■ Example: Material (5 textures + uniform buffer with value data)
○ Draw calls have three bind group slots: 0, 1, 2 (Vulkan Android min spec = 4)

■ Matching the GLSL shader descriptor set slots
■ Group data by bind frequency

● Abstraction: Dynamic bindings group
○ A flexible way to provide draw data. Only supports buffer bindings (with offset).
○ Vulkan/WebGPU: set 3 (dynamic offset). Metal: setBuffer + setOffset
○ Push constants? Emulated on many mobile GPUs :(

HypeHype bind groups
Renderpass globals

Material

Shader specific

0

1

2

Dynamic draw data
Not hardcoded!

A software command buffer, but an order of magnitude faster

● Initial design: Array of draw structs
○ Only contains “metadata”
○ Super simple and fast

■ 64 bytes = 1 cache line per draw
○ Actual data inside buffers (inside groups)

■ Write temp data from N threads
directly into GPU memory

● Let’s analyze the data
○ All fields are 32 bit integers
○ Most data doesn’t change between draw

calls when rendering binned content
○ On average 4.5 fields change (~18 bytes)

PSO with all
render state

Draw stream: Our data interface for draw calls
SBBBD
IVVVI
VIIDT

shader
16+16

bind
group
16+16

index
buffer
16+16

vertex
buffer
16+16

tri
count
32

SBBBD
IVVVI
VIIDT

dynbuf
offset
32

SBBBD
IVVVI
VIIDT

dynbuf
offset
32

SBBBD
IVVVI
VIIDT

index
offset
32

vertex
offset
32

dynbuf
offset
32 …

Draw 0 →

● Store only the modified fields of the draw struct
○ uint32 dirty mask tells which fields have modified

● User land: Draw stream writer class
○ Contains a draw struct (current state) + dirty mask
○ Setter for each field: if changed → set dirty bit + write field to stream
○ Draw: write dirty mask in front of the draw (stored offset)

● Backend: Stream decoding
○ For each draw: Read the dirty field bitmask

■ For each set bit: Read field and emit a gfx API call
○ Advantages: No change tracking in the backend. ~3x reduced BW

Draw 1 → Draw 2 → Draw 3 →

Example: Simple draw loop
← Per pass bindings (once)

← GPU temp bump allocator
← Write uniforms directly to GPU

← DrawStream setters

← Note: User land mesh
← Write draw dirty bitmask

Thank you!

10,000 draw calls (CPU time)
AMD RDNA2 + 6800HS 4.7GHz
Apple iPhone 6s + 1.85GHz
PowerVR GE8320 + A53 2.3GHz
ARM Mali G57 MP1 + A75 1.6GHz
QC Adreno 610 + Kryo 260 2GHz

Single CPU thread
Standard non-instanced draws
No GPU persistent scene data

No batching: 10,000 mesh and material changes
>80% time spent in driver

All devices run cool over long period of time
Art by Daniel Palmi

iPhone 6s PBR
@ 60 fps

99€

7 year old

99€

149€

iGPU 0.85ms
11.27ms
20.93ms
15.01ms
13.69ms

References
[1] Haar, Aaltonen: GPU-Driven Rendering Pipelines, SIGGRAPH 2015: Advances in Real-Time Rendering in Games, 2015
https://advances.realtimerendering.com/s2015/aaltonenhaar_siggraph2015_combined_final_footer_220dpi.pdf

[2] Aaltonen: GPU-Based Clay Simulation and Ray-Tracing Tech in 'Claybook', GDC, 2018
https://www.gdcvault.com/play/1025316/Advanced-Graphics-Techniques-Tutorial-GPU

[3] Various IHV documents and hardware statistics

● Wikipedia: Nintendo Switch (ALU & bandwidth): https://en.wikipedia.org/wiki/Nintendo_Switch
● Nvidia CUDA: https://en.wikipedia.org/wiki/CUDA
● Google Android Baseline Vulkan Profile (Android limits): https://github.com/KhronosGroup/Vulkan-Profiles/blob/main/profiles/VP_ANDROID_baseline_2021.json#L54
● Subgroup operation support in Vulkan 1.0 on Android (not supported devices):

https://vulkan.gpuinfo.org/listdevicescoverage.php?extension=VK_EXT_shader_subgroup_ballot&platform=android&option=not
● 64 bit uint support in shaders on Android (not supported devices): https://vulkan.gpuinfo.org/listdevicescoverage.php?feature=shaderInt64&platform=android&option=not
● ARM lack of SSBO support in vertex shaders in GLES:

https://community.arm.com/support-forums/f/graphics-gaming-and-vr-forum/52064/do-you-have-a-plan-to-support-ssbo-at-vertex-shader-on-opengl-es

[4] SPIRV-Cross: https://github.com/KhronosGroup/SPIRV-Cross

[5] Tatarchuk, Cooper, Aaltonen: Unity Rendering Architecture, Rendering Engine Architecture Conference (REAC), 2023
http://enginearchitecture.realtimerendering.com/downloads/reac2021_unity_rendering_engine_architecture.pdf

[6] SoA layout, Wikipedia: https://en.wikipedia.org/wiki/AoS_and_SoA

[7] Aaltonen: OffsetAllocator: https://github.com/sebbbi/OffsetAllocator

https://advances.realtimerendering.com/s2015/aaltonenhaar_siggraph2015_combined_final_footer_220dpi.pdf
https://www.gdcvault.com/play/1025316/Advanced-Graphics-Techniques-Tutorial-GPU
https://en.wikipedia.org/wiki/Nintendo_Switch
https://en.wikipedia.org/wiki/CUDA
https://github.com/KhronosGroup/Vulkan-Profiles/blob/main/profiles/VP_ANDROID_baseline_2021.json#L54
https://vulkan.gpuinfo.org/listdevicescoverage.php?extension=VK_EXT_shader_subgroup_ballot&platform=android&option=not
https://vulkan.gpuinfo.org/listdevicescoverage.php?feature=shaderInt64&platform=android&option=not
https://community.arm.com/support-forums/f/graphics-gaming-and-vr-forum/52064/do-you-have-a-plan-to-support-ssbo-at-vertex-shader-on-opengl-es
https://github.com/KhronosGroup/SPIRV-Cross
http://enginearchitecture.realtimerendering.com/downloads/reac2021_unity_rendering_engine_architecture.pdf
https://en.wikipedia.org/wiki/AoS_and_SoA
https://github.com/sebbbi/OffsetAllocator

